Application of Multi-Way Principal Component Analysis on Batch Data

Jeffy F J, Jinendra K. Gugaliya, V. Kariwala
{"title":"Application of Multi-Way Principal Component Analysis on Batch Data","authors":"Jeffy F J, Jinendra K. Gugaliya, V. Kariwala","doi":"10.1109/CONTROL.2018.8516806","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the use of Multi-way Principal Component Analysis (MPCA) to classify batch operation data as normal or abnormal. MPCA also helps in isolating the batches having higher noise levels than the nominal conditions and the variables that deviate significantly from the nominal traj ectory. Additionally, this paper proposes a novel approach of generating data for building the robust MPCA model based on limited number of batch run data. The paper successfully demonstrates the application of proposed method using data from a milk pasteurization process.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose the use of Multi-way Principal Component Analysis (MPCA) to classify batch operation data as normal or abnormal. MPCA also helps in isolating the batches having higher noise levels than the nominal conditions and the variables that deviate significantly from the nominal traj ectory. Additionally, this paper proposes a novel approach of generating data for building the robust MPCA model based on limited number of batch run data. The paper successfully demonstrates the application of proposed method using data from a milk pasteurization process.
多向主成分分析在批量数据中的应用
在本文中,我们提出使用多向主成分分析(MPCA)来分类批次操作数据的正常或异常。MPCA还有助于隔离噪声水平高于标称条件的批次和显著偏离标称轨迹的变量。此外,本文还提出了一种基于有限批运行数据的鲁棒MPCA模型生成数据的新方法。本文利用牛奶巴氏灭菌过程的数据成功地演示了所提出方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信