The Biased Long Code and Hardness of Vertex Cover

{"title":"The Biased Long Code and Hardness of Vertex Cover","authors":"","doi":"10.1145/3568031.3568037","DOIUrl":null,"url":null,"abstract":"5.1 Biased Long Code While the biased long code can be viewed as an encoding scheme, it is more con­ venient to take a combinatorial view and treat it as a weighted Kneser graph. Valid codewords correspond to certain large (in fact the largest) independent sets in this graph. Definition 5.1 For a bias parameter p ∈ (0, 1) and alphabet Σ, the vertex set of weighted Kneser graph Gp[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex A ⊆ Σ is μp(A) = p|A|(1 − p)|Σ|−|A|. The edge set is { (A, B) | A, B ⊆ Σ, A ∩ B = φ}. For a family F ⊆ P(Σ), let μp(F ) denote its weight under μp.","PeriodicalId":377190,"journal":{"name":"Circuits, Packets, and Protocols","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Packets, and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568031.3568037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

5.1 Biased Long Code While the biased long code can be viewed as an encoding scheme, it is more con­ venient to take a combinatorial view and treat it as a weighted Kneser graph. Valid codewords correspond to certain large (in fact the largest) independent sets in this graph. Definition 5.1 For a bias parameter p ∈ (0, 1) and alphabet Σ, the vertex set of weighted Kneser graph Gp[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex A ⊆ Σ is μp(A) = p|A|(1 − p)|Σ|−|A|. The edge set is { (A, B) | A, B ⊆ Σ, A ∩ B = φ}. For a family F ⊆ P(Σ), let μp(F ) denote its weight under μp.
顶点覆盖的偏长码与硬度
虽然偏长码可以看作是一种编码方案,但从组合的角度来看,将其视为加权的Kneser图更为方便。有效码字对应于此图中某些较大的(实际上是最大的)独立集。定义5.1对于偏差参数p∈(0,1),字母Σ,加权Kneser图Gp[Σ]的顶点集为p (Σ),即Σ的所有子集的族。一个顶点的重量⊆Σμp (a) = p | |(1−p) |Σ|−| |。边集为{(A, B) | A, B≤Σ, A∩B = φ}。对于一个族F (Σ),设μp(F)为其在μp下的权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信