Web Document Clustering Using Document Index Graph

B. Momin, P. Kulkarni, A. Chaudhari
{"title":"Web Document Clustering Using Document Index Graph","authors":"B. Momin, P. Kulkarni, A. Chaudhari","doi":"10.1109/ADCOM.2006.4289851","DOIUrl":null,"url":null,"abstract":"Document Clustering is an important tool for many Information Retrieval (IR) tasks. The huge increase in amount of information present on Web poses new challenges in clustering regarding to underlying data model and nature of clustering algorithm. Document clustering techniques mostly rely on single term analysis of document data set. To achieve more accurate document clustering, more informative feature such as phrases are important in this scenario. Hence first part of the paper presents phrase-based model, Document Index Graph (DIG), which allows incremental phrase-based encoding of documents and efficient phrase matching. It emphasizes on effectiveness of phrase-based similarity measure over traditional single term based similarities. In the second part, a Document Index Graph based Clustering (DIGBC) algorithm is proposed to enhance the DIG model for incremental and soft clustering. This algorithm incrementally clusters documents based on proposed cluster-document similarity measure. It allows assignment of a document to more than one cluster. The DIGBC algorithm is more efficient as compared to existing clustering algorithms such as single pass, K-NN and Hierarchical Agglomerative Clustering (HAC) algorithm.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Document Clustering is an important tool for many Information Retrieval (IR) tasks. The huge increase in amount of information present on Web poses new challenges in clustering regarding to underlying data model and nature of clustering algorithm. Document clustering techniques mostly rely on single term analysis of document data set. To achieve more accurate document clustering, more informative feature such as phrases are important in this scenario. Hence first part of the paper presents phrase-based model, Document Index Graph (DIG), which allows incremental phrase-based encoding of documents and efficient phrase matching. It emphasizes on effectiveness of phrase-based similarity measure over traditional single term based similarities. In the second part, a Document Index Graph based Clustering (DIGBC) algorithm is proposed to enhance the DIG model for incremental and soft clustering. This algorithm incrementally clusters documents based on proposed cluster-document similarity measure. It allows assignment of a document to more than one cluster. The DIGBC algorithm is more efficient as compared to existing clustering algorithms such as single pass, K-NN and Hierarchical Agglomerative Clustering (HAC) algorithm.
使用文档索引图的Web文档聚类
文档聚类是许多信息检索(IR)任务的重要工具。Web上信息量的巨大增长给聚类带来了新的挑战,涉及到底层数据模型和聚类算法的性质。文档聚类技术主要依赖于文档数据集的单项分析。为了实现更准确的文档聚类,更多的信息特征(如短语)在这个场景中很重要。因此,本文第一部分提出了基于短语的模型文档索引图(DIG),该模型允许基于短语的文档增量编码和高效的短语匹配。它强调基于短语的相似度度量比传统的基于单个词的相似度度量更有效。在第二部分,提出了一种基于文档索引图的聚类算法(DIGBC),以增强DIG模型的增量聚类和软聚类。该算法基于提出的聚类文档相似度度量对文档进行增量聚类。它允许将一个文档分配给多个集群。与现有的单遍聚类算法、K-NN聚类算法和HAC聚类算法相比,DIGBC算法具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信