A concurrent neural network algorithm for the traveling salesman problem

N. Toomarian
{"title":"A concurrent neural network algorithm for the traveling salesman problem","authors":"N. Toomarian","doi":"10.1145/63047.63105","DOIUrl":null,"url":null,"abstract":"A binary neuromorphic data structure is used to encode the N — city Traveling Salesman Problem (TSP). In this representation the computational complexity, in terms of number of neurons, is reduced from Hopfield and Tank's &Ogr;(N2) to &Ogr;(N log2 N). A continuous synchronous neural network algorithm in conjunction with the LaGrange multiplier, is used to solve the problem. The algorithm has been implemented on the NCUBE hypercube multiprocessor. This algorithm converges faster and has a higher probability to reach a valid tour than previously available results.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A binary neuromorphic data structure is used to encode the N — city Traveling Salesman Problem (TSP). In this representation the computational complexity, in terms of number of neurons, is reduced from Hopfield and Tank's &Ogr;(N2) to &Ogr;(N log2 N). A continuous synchronous neural network algorithm in conjunction with the LaGrange multiplier, is used to solve the problem. The algorithm has been implemented on the NCUBE hypercube multiprocessor. This algorithm converges faster and has a higher probability to reach a valid tour than previously available results.
旅行商问题的并行神经网络算法
采用二值神经形态数据结构对N城市旅行商问题进行编码。在这种表示中,以神经元数量为单位的计算复杂度从Hopfield和Tank的&Ogr;(N2)降低到&Ogr;(N log2 N)。使用结合拉格朗日乘子的连续同步神经网络算法来解决问题。该算法已在NCUBE超立方体多处理器上实现。该算法收敛速度快,并且比以前的结果有更高的概率到达有效的巡回。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信