Shrinkage k-Means: A Clustering Algorithm Based on the James-Stein Estimator

Filipe F. R. Damasceno, Marcelo B. A. Veras, D. Mesquita, J. Gomes, Carlos Brito
{"title":"Shrinkage k-Means: A Clustering Algorithm Based on the James-Stein Estimator","authors":"Filipe F. R. Damasceno, Marcelo B. A. Veras, D. Mesquita, J. Gomes, Carlos Brito","doi":"10.1109/BRACIS.2016.084","DOIUrl":null,"url":null,"abstract":"In this work, we propose Shrinkage k-means (Sk-means), a novel variant of k-means based on the James-Stein estimator for the mean of a multivariate normal given a single sample point. We evaluate Sk-means on both synthetic and real-world data. The proposed method outperformed standard clustering methods and also the existing method based on k-means which uses the James-Stein estimator. Results also suggest that Sk-means is robust to outliers.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose Shrinkage k-means (Sk-means), a novel variant of k-means based on the James-Stein estimator for the mean of a multivariate normal given a single sample point. We evaluate Sk-means on both synthetic and real-world data. The proposed method outperformed standard clustering methods and also the existing method based on k-means which uses the James-Stein estimator. Results also suggest that Sk-means is robust to outliers.
收缩k均值:一种基于James-Stein估计的聚类算法
在这项工作中,我们提出了收缩k-means (Sk-means),这是基于给定单个样本点的多元正态均值的James-Stein估计量的k-means的新变体。我们在合成数据和真实数据上评估Sk-means。该方法优于标准聚类方法,也优于现有的基于k-means的James-Stein估计方法。结果还表明,sk均值对异常值具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信