An enhanced neural system for biomedical image classification

S. D. Bona, O. Salvetti
{"title":"An enhanced neural system for biomedical image classification","authors":"S. D. Bona, O. Salvetti","doi":"10.1109/IAI.2000.839588","DOIUrl":null,"url":null,"abstract":"Comparison and classification of images obtained from a single or more patients, at different times but with the same procedure, is important in evaluating the origin or the degree of several pathologies. As well, image classification fusing data acquired from different sources is often needed to locate regions or volumes, to analyse complex scenes or to simulate a diagnosis prediction. In this paper we present an enhanced neural system able to locate and classify tissue densitometric alterations in CT/MR image sequences; such a system has been optimised in order to reduce the computational complexity and the computational time.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Comparison and classification of images obtained from a single or more patients, at different times but with the same procedure, is important in evaluating the origin or the degree of several pathologies. As well, image classification fusing data acquired from different sources is often needed to locate regions or volumes, to analyse complex scenes or to simulate a diagnosis prediction. In this paper we present an enhanced neural system able to locate and classify tissue densitometric alterations in CT/MR image sequences; such a system has been optimised in order to reduce the computational complexity and the computational time.
一种用于生物医学图像分类的增强神经系统
对单个或多个患者在不同时间使用相同程序获得的图像进行比较和分类,对于评估几种病理的起源或程度非常重要。此外,通常需要从不同来源获取的图像分类融合数据来定位区域或体积,分析复杂场景或模拟诊断预测。在本文中,我们提出了一种增强的神经系统,能够定位和分类CT/MR图像序列中的组织密度变化;为了降低计算复杂度和计算时间,对该系统进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信