A numerical oscillation problem of particle methods for CG animations of incompressible fluid dynamics

Motofumi Hattori, Yuki Nakajtma, Shunsuke Murai, Y. Seta, Miyuki Fujii, M. Tanabe
{"title":"A numerical oscillation problem of particle methods for CG animations of incompressible fluid dynamics","authors":"Motofumi Hattori, Yuki Nakajtma, Shunsuke Murai, Y. Seta, Miyuki Fujii, M. Tanabe","doi":"10.1109/GCCE.2012.6379600","DOIUrl":null,"url":null,"abstract":"The discrete time Navier-Stokes equation (22) by the semi-implicit lime evolution scheme gives an approximate solution to the incompressible Navier-Stokes equation (4). But the pressure P* and the posidon U* in die equation (22) do not satisfy die incompressibility (2), Thus die computed pressure P* oscillates numerically. The discrete lime Navier-Slokes equation (22) must be modified in order to converge to die Navier-Stokes equation (4).","PeriodicalId":299732,"journal":{"name":"The 1st IEEE Global Conference on Consumer Electronics 2012","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Global Conference on Consumer Electronics 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2012.6379600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The discrete time Navier-Stokes equation (22) by the semi-implicit lime evolution scheme gives an approximate solution to the incompressible Navier-Stokes equation (4). But the pressure P* and the posidon U* in die equation (22) do not satisfy die incompressibility (2), Thus die computed pressure P* oscillates numerically. The discrete lime Navier-Slokes equation (22) must be modified in order to converge to die Navier-Stokes equation (4).
不可压缩流体动力学CG动画的粒子法数值振荡问题
离散时间Navier-Stokes方程(22)采用半隐式灰演化格式给出了不可压缩Navier-Stokes方程(4)的近似解,但模具方程(22)中的压力P*和位置U*不满足模具不可压缩性(2),因此模具计算压力P*在数值上振荡。为了收敛于离散的Navier-Stokes方程(4),必须对离散的Navier-Slokes方程(22)进行修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信