Optimizing beyond the carrier by carrier proportional fair scheduler

Alexander X. Han, I. Lu
{"title":"Optimizing beyond the carrier by carrier proportional fair scheduler","authors":"Alexander X. Han, I. Lu","doi":"10.1109/SARNOF.2011.5876485","DOIUrl":null,"url":null,"abstract":"The multi-carrier proportional fair scheduling (MC-PFS) problem in a multi-user system has been shown to be NP-hard. Carrier by carrier proportional fair scheduling (CC-PFS) is commonly used instead to allocate resources in real-time. Considering the sub-optimal nature of CC-PFS and its popularity, this paper formulates the optimization beyond CC-PFS as a constrained maximum sum rate problem (with users' data rates scheduled by CC-PFS as the constraint) and tackles the problem in two ways. Firstly, the problem is shown to be equivalent to the well-studied generalized assignment problem (GAP) under the assumption of infinitely backlogged data. By considering traffic arrivals, the problem becomes a nonlinear integer programming problem which can be solved by outer approximation (OA) algorithms. Secondly, the problem is shown to be equivalent to a classical trading problem, and a low complexity heuristic algorithm that can be run in real-time is developed based on trading resource blocks (RBs). Using a system scheduling many video call users, we show that in about half of the time slots, the sum rate can be improved over CC-PFS while each user transmits at least as many bits as scheduled by CC-PFS. The heuristic algorithm captures about 30% of the throughput improvement found by OA. Finally, the reason for the improvements over CC-PFS is found to be traffic arrival.","PeriodicalId":339596,"journal":{"name":"34th IEEE Sarnoff Symposium","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th IEEE Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2011.5876485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The multi-carrier proportional fair scheduling (MC-PFS) problem in a multi-user system has been shown to be NP-hard. Carrier by carrier proportional fair scheduling (CC-PFS) is commonly used instead to allocate resources in real-time. Considering the sub-optimal nature of CC-PFS and its popularity, this paper formulates the optimization beyond CC-PFS as a constrained maximum sum rate problem (with users' data rates scheduled by CC-PFS as the constraint) and tackles the problem in two ways. Firstly, the problem is shown to be equivalent to the well-studied generalized assignment problem (GAP) under the assumption of infinitely backlogged data. By considering traffic arrivals, the problem becomes a nonlinear integer programming problem which can be solved by outer approximation (OA) algorithms. Secondly, the problem is shown to be equivalent to a classical trading problem, and a low complexity heuristic algorithm that can be run in real-time is developed based on trading resource blocks (RBs). Using a system scheduling many video call users, we show that in about half of the time slots, the sum rate can be improved over CC-PFS while each user transmits at least as many bits as scheduled by CC-PFS. The heuristic algorithm captures about 30% of the throughput improvement found by OA. Finally, the reason for the improvements over CC-PFS is found to be traffic arrival.
优化超越载波的载波比例公平调度
多用户系统中的多载波比例公平调度(MC-PFS)问题具有np困难问题。通常采用载波比例公平调度(CC-PFS)来实时分配资源。考虑到CC-PFS的次优特性及其普及,本文将超越CC-PFS的优化问题表述为一个约束最大和速率问题(以CC-PFS调度的用户数据速率为约束),并从两方面解决该问题。首先,在无限积压数据的假设下,证明了该问题等价于已经得到广泛研究的广义分配问题(GAP)。考虑交通到达后,该问题变成一个非线性整数规划问题,可以用外逼近算法求解。其次,将该问题等同于经典的交易问题,并基于交易资源块开发了一种可实时运行的低复杂度启发式算法。使用调度许多视频呼叫用户的系统,我们表明,在大约一半的时隙中,当每个用户传输至少与CC-PFS计划的一样多的比特时,求和速率可以比CC-PFS提高。启发式算法捕获了OA发现的大约30%的吞吐量改进。最后,对CC-PFS进行改进的原因是流量到达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信