CFD in the Aerospace and Aeronautics Industries

J. Isaac, S. Graham
{"title":"CFD in the Aerospace and Aeronautics Industries","authors":"J. Isaac, S. Graham","doi":"10.4172/2168-9792.1000113","DOIUrl":null,"url":null,"abstract":"When we think of CFD (computational fluid dynamics) in the aerospace and aeronautical industries, we often limit our thinking to the aerodynamic analysis of wing/tail structure or fuselages. But CFD analysis applies to almost all of the critical components and systems of an aircraft. For example, excessive heat in the electronic components can lead to failure and reliability issues. Fuel delivery and engine cooling systems must be optimized. Cabin air conditioning/heating systems need to be analyzed. And the industry cannot afford to either over-conservatively design these systems (excessive cost) or prove efficiency/reliability by building multiple physical prototypes, testing in labs, and then re-designing, which is a long and expensive process. Because of these issues, CFD comes into play early and throughout the design process for multiple components and systems in the aircraft.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When we think of CFD (computational fluid dynamics) in the aerospace and aeronautical industries, we often limit our thinking to the aerodynamic analysis of wing/tail structure or fuselages. But CFD analysis applies to almost all of the critical components and systems of an aircraft. For example, excessive heat in the electronic components can lead to failure and reliability issues. Fuel delivery and engine cooling systems must be optimized. Cabin air conditioning/heating systems need to be analyzed. And the industry cannot afford to either over-conservatively design these systems (excessive cost) or prove efficiency/reliability by building multiple physical prototypes, testing in labs, and then re-designing, which is a long and expensive process. Because of these issues, CFD comes into play early and throughout the design process for multiple components and systems in the aircraft.
航空航天和航空工业中的CFD
当我们想到航空航天工业中的CFD(计算流体动力学)时,我们通常将思维局限于机翼/尾翼结构或机身的气动分析。但CFD分析几乎适用于飞机的所有关键部件和系统。例如,电子元件过热会导致故障和可靠性问题。燃油输送和发动机冷却系统必须优化。客舱空调/供暖系统需要分析。业界既不能过于保守地设计这些系统(成本过高),也不能通过构建多个物理原型,在实验室中测试,然后重新设计来证明效率/可靠性,这是一个漫长而昂贵的过程。由于这些问题,CFD很早就开始发挥作用,并贯穿于飞机多个部件和系统的设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信