NLP@UIT at FigLang-EMNLP 2022: A Divide-and-Conquer System For Shared Task On Understanding Figurative Language

Khoa Thi-Kim Phan, Duc-Vu Nguyen, N. Nguyen
{"title":"NLP@UIT at FigLang-EMNLP 2022: A Divide-and-Conquer System For Shared Task On Understanding Figurative Language","authors":"Khoa Thi-Kim Phan, Duc-Vu Nguyen, N. Nguyen","doi":"10.18653/v1/2022.flp-1.21","DOIUrl":null,"url":null,"abstract":"This paper describes our submissions to the EMNLP 2022 shared task on Understanding Figurative Language as part of the Figurative Language Workshop (FigLang 2022). Our systems based on pre-trained language model T5 are divide-and-conquer models which can address both two requirements of the task: 1) classification, and 2) generation. In this paper, we introduce different approaches in which each approach we employ a processing strategy on input model. We also emphasize the influence of the types of figurative language on our systems.","PeriodicalId":332745,"journal":{"name":"Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.flp-1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes our submissions to the EMNLP 2022 shared task on Understanding Figurative Language as part of the Figurative Language Workshop (FigLang 2022). Our systems based on pre-trained language model T5 are divide-and-conquer models which can address both two requirements of the task: 1) classification, and 2) generation. In this paper, we introduce different approaches in which each approach we employ a processing strategy on input model. We also emphasize the influence of the types of figurative language on our systems.
NLP@UIT在FigLang-EMNLP 2022:一个用于理解比喻语言的共享任务的分而治之系统
本文描述了我们提交给EMNLP 2022的关于理解比喻语言的共享任务,作为比喻语言研讨会(FigLang 2022)的一部分。我们基于预训练语言模型T5的系统是分而治之的模型,它可以满足任务的两个要求:1)分类,2)生成。在本文中,我们介绍了不同的方法,其中每种方法都采用了对输入模型的处理策略。我们还强调了比喻语言的类型对我们的系统的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信