Single-step feedback linearization with assignable dynamics for hyperbolic PDE

I. Aksikas, S. Dubljevic
{"title":"Single-step feedback linearization with assignable dynamics for hyperbolic PDE","authors":"I. Aksikas, S. Dubljevic","doi":"10.1109/MED.2015.7158915","DOIUrl":null,"url":null,"abstract":"The present work proposes an extension of single-step feedback linearization with pole-placement formulation to the class of nonlinear hyperbolic systems. In particular, the mathematical formulation in the context of singular PDE theory is utilized via system of first order quasi-linear singular PDEs within the nonlinear hyperbolic PDE setting to obtain single step state nonlinear transformation and feedback control law with prescribed closed loop dynamics. The solution of quasi linear singular PDE is guaranteed by the Lyapunov's auxiliary theorem and locally invertible analytic transformation is applied by the full state feedback law to yield desired stable hyperbolic PDE system with assignable dynamics. The simultaneous state transformation and feedback linearization are realized in one step, avoiding the restrictions existing in other approaches.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work proposes an extension of single-step feedback linearization with pole-placement formulation to the class of nonlinear hyperbolic systems. In particular, the mathematical formulation in the context of singular PDE theory is utilized via system of first order quasi-linear singular PDEs within the nonlinear hyperbolic PDE setting to obtain single step state nonlinear transformation and feedback control law with prescribed closed loop dynamics. The solution of quasi linear singular PDE is guaranteed by the Lyapunov's auxiliary theorem and locally invertible analytic transformation is applied by the full state feedback law to yield desired stable hyperbolic PDE system with assignable dynamics. The simultaneous state transformation and feedback linearization are realized in one step, avoiding the restrictions existing in other approaches.
双曲PDE的单步反馈线性化可分配动力学
本文提出了用极点放置公式将单步反馈线性化推广到一类非线性双曲型系统。特别地,在非线性双曲PDE设置下,通过一阶拟线性奇异PDE系统,利用奇异PDE理论背景下的数学公式,得到具有规定闭环动力学的单步状态非线性变换和反馈控制律。利用Lyapunov辅助定理保证了拟线性奇异PDE的解,并利用全状态反馈律应用局部可逆解析变换得到了具有可分配动力学的理想稳定双曲PDE系统。该方法同时实现了状态变换和反馈线性化,避免了其他方法存在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信