Tony Lindgren, P. Papapetrou, Isak Samsten, L. Asker
{"title":"Example-Based Feature Tweaking Using Random Forests","authors":"Tony Lindgren, P. Papapetrou, Isak Samsten, L. Asker","doi":"10.1109/IRI.2019.00022","DOIUrl":null,"url":null,"abstract":"In certain application areas when using predictive models, it is not enough to make an accurate prediction for an example, instead it might be more important to change a prediction from an undesired class into a desired class. In this paper we investigate methods for changing predictions of examples. To this end, we introduce a novel algorithm for changing predictions of examples and we compare this novel method to an existing method and a baseline method. In an empirical evaluation we compare the three methods on a total of 22 datasets. The results show that the novel method and the baseline method can change an example from an undesired class into a desired class in more cases than the competitor method (and in some cases this difference is statistically significant). We also show that the distance, as measured by the euclidean norm, is higher for the novel and baseline methods (and in some cases this difference is statistically significantly) than for state-of-the-art. The methods and their proposed changes are also evaluated subjectively in a medical domain with interesting results.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In certain application areas when using predictive models, it is not enough to make an accurate prediction for an example, instead it might be more important to change a prediction from an undesired class into a desired class. In this paper we investigate methods for changing predictions of examples. To this end, we introduce a novel algorithm for changing predictions of examples and we compare this novel method to an existing method and a baseline method. In an empirical evaluation we compare the three methods on a total of 22 datasets. The results show that the novel method and the baseline method can change an example from an undesired class into a desired class in more cases than the competitor method (and in some cases this difference is statistically significant). We also show that the distance, as measured by the euclidean norm, is higher for the novel and baseline methods (and in some cases this difference is statistically significantly) than for state-of-the-art. The methods and their proposed changes are also evaluated subjectively in a medical domain with interesting results.