Multi Camera-Based Person Tracking Using Region Covariance and Homography Constraint

B. Kwolek
{"title":"Multi Camera-Based Person Tracking Using Region Covariance and Homography Constraint","authors":"B. Kwolek","doi":"10.1109/AVSS.2010.20","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm for multiple camera based persontracking is presented. Region covariance matrixes areused to model the target appearance. The correspondencebetween multiple camera views is established via homography.It is utilized to improve the tracking of people under assumptionthat they are at the common ground plane. If thereis occlusion in one view, the homography to this view fromanother view is utilized to locate the object template. Theinformation about the true location of the template helpsthe tracker to resume, even in case of substantial temporalocclusions or large object movements. The object templateis represented by multiple non-overlapping patches. Owingto such an object representation the tracker is capable bothdetecting the occlusion and handling considerable partialocclusions. The object tracking is achieved using particleswarm optimization. The objective function is based on theLog-Euclidean Riemannian metric. Experimental resultsthat were obtained on surveillance videos show the feasibilityof the presented approach.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"520 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, an algorithm for multiple camera based persontracking is presented. Region covariance matrixes areused to model the target appearance. The correspondencebetween multiple camera views is established via homography.It is utilized to improve the tracking of people under assumptionthat they are at the common ground plane. If thereis occlusion in one view, the homography to this view fromanother view is utilized to locate the object template. Theinformation about the true location of the template helpsthe tracker to resume, even in case of substantial temporalocclusions or large object movements. The object templateis represented by multiple non-overlapping patches. Owingto such an object representation the tracker is capable bothdetecting the occlusion and handling considerable partialocclusions. The object tracking is achieved using particleswarm optimization. The objective function is based on theLog-Euclidean Riemannian metric. Experimental resultsthat were obtained on surveillance videos show the feasibilityof the presented approach.
基于区域协方差和单应性约束的多摄像机人物跟踪
提出了一种基于多摄像机的人物跟踪算法。区域协方差矩阵被用来模拟目标的外观。多个摄像机视图之间的对应关系通过单应性建立。它用于改善假设人们在公共地平面上的跟踪。如果在一个视图中存在遮挡,则利用从另一个视图到该视图的同形性来定位对象模板。关于模板真实位置的信息有助于跟踪器恢复,即使在严重的时间闭塞或大型物体移动的情况下。对象模板由多个不重叠的patch表示。由于这样的对象表示,跟踪器能够检测遮挡和处理相当大的部分遮挡。目标跟踪是通过粒子热优化实现的。目标函数基于对数-欧几里德黎曼度量。在监控视频上的实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信