Single document extractive text summarization using Genetic Algorithms

N. Chatterjee, A. Mittal, S. Goyal
{"title":"Single document extractive text summarization using Genetic Algorithms","authors":"N. Chatterjee, A. Mittal, S. Goyal","doi":"10.1109/EAIT.2012.6407852","DOIUrl":null,"url":null,"abstract":"This paper presents an extraction based single document text summarization technique using Genetic Algorithms. A given document is represented as a weighted Directed Acyclic Graph. A fitness function is defined to mathematically express the quality of a summary in terms of some desired properties of a summary, such as, topic relation, cohesion and readability. Genetic Algorithm is designed to maximize this fitness function, and get the corresponding summary by extracting the most important sentences. Results are compared with a couple of other existing text summarization methods keeping the DUC2002 data as benchmark, and using the precision-recall evaluation technique. The initial results obtained seem promising and encouraging for future work in this area.","PeriodicalId":194103,"journal":{"name":"2012 Third International Conference on Emerging Applications of Information Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Applications of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.2012.6407852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This paper presents an extraction based single document text summarization technique using Genetic Algorithms. A given document is represented as a weighted Directed Acyclic Graph. A fitness function is defined to mathematically express the quality of a summary in terms of some desired properties of a summary, such as, topic relation, cohesion and readability. Genetic Algorithm is designed to maximize this fitness function, and get the corresponding summary by extracting the most important sentences. Results are compared with a couple of other existing text summarization methods keeping the DUC2002 data as benchmark, and using the precision-recall evaluation technique. The initial results obtained seem promising and encouraging for future work in this area.
基于遗传算法的单文档提取文本摘要
提出了一种基于遗传算法提取的单文档文本摘要技术。给定的文档表示为加权的有向无环图。定义了适应度函数,以数学方式表示摘要的质量,根据摘要的一些期望属性,如主题关系、内聚性和可读性。设计遗传算法来最大化该适应度函数,并通过提取最重要的句子得到相应的摘要。以DUC2002数据为基准,采用查准率-查全率评价技术,与已有的几种文本摘要方法进行了比较。获得的初步结果似乎对这一领域的未来工作充满希望和鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信