Fish Species Identification in Real-Life Underwater Images

MAED '14 Pub Date : 2014-11-07 DOI:10.1145/2661821.2661822
S. Palazzo, Francesca Murabito
{"title":"Fish Species Identification in Real-Life Underwater Images","authors":"S. Palazzo, Francesca Murabito","doi":"10.1145/2661821.2661822","DOIUrl":null,"url":null,"abstract":"Kernel descriptors consist in finite-dimensional vectors extracted from image patches and designed in such a way that the dot product approximates a nonlinear kernel, whose projection feature space would be high-dimensional. Recently, they have been successfully used for fine-gradined object recogntion, and in this work we study the application of two such descriptors, called EMK and KDES (respectively designed as a kernelized generalization of the common bag-of-words and histogram-of-gradient approaches) to the MAED 2014 Fish Classification task, consisting of about 50,000 underwater images from 10 fish species.","PeriodicalId":250753,"journal":{"name":"MAED '14","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661821.2661822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Kernel descriptors consist in finite-dimensional vectors extracted from image patches and designed in such a way that the dot product approximates a nonlinear kernel, whose projection feature space would be high-dimensional. Recently, they have been successfully used for fine-gradined object recogntion, and in this work we study the application of two such descriptors, called EMK and KDES (respectively designed as a kernelized generalization of the common bag-of-words and histogram-of-gradient approaches) to the MAED 2014 Fish Classification task, consisting of about 50,000 underwater images from 10 fish species.
真实水下图像中的鱼类识别
核描述符由从图像块中提取的有限维向量组成,并以点积近似于非线性核的方式设计,其投影特征空间将是高维的。最近,它们已经成功地用于精细目标识别,在这项工作中,我们研究了两个这样的描述符,称为EMK和KDES(分别设计为常见词袋和梯度直方图方法的核化推广)在MAED 2014鱼类分类任务中的应用,该任务包括来自10种鱼类的约50,000张水下图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信