Predicting change impact from logical models

Sunny Wong, Yuanfang Cai
{"title":"Predicting change impact from logical models","authors":"Sunny Wong, Yuanfang Cai","doi":"10.1109/ICSM.2009.5306277","DOIUrl":null,"url":null,"abstract":"To improve the ability of predicting the impact scope of a given change, we present two approaches applicable to the maintenance of object-oriented software systems. Our first approach exclusively uses a logical model extracted from UML relations among classes, and our other, hybrid approach additionally considers information mined from version histories. Using the open source Hadoop system, we evaluate our approaches by comparing our impact predictions with predictions generated using existing data mining techniques, and with actual change sets obtained from bug reports. We show that both our approaches produce better predictions when the system is immature and the version history is not well-established, and our hybrid approach produces comparable results with data mining as the system evolves.","PeriodicalId":247441,"journal":{"name":"2009 IEEE International Conference on Software Maintenance","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Software Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSM.2009.5306277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

To improve the ability of predicting the impact scope of a given change, we present two approaches applicable to the maintenance of object-oriented software systems. Our first approach exclusively uses a logical model extracted from UML relations among classes, and our other, hybrid approach additionally considers information mined from version histories. Using the open source Hadoop system, we evaluate our approaches by comparing our impact predictions with predictions generated using existing data mining techniques, and with actual change sets obtained from bug reports. We show that both our approaches produce better predictions when the system is immature and the version history is not well-established, and our hybrid approach produces comparable results with data mining as the system evolves.
从逻辑模型预测变更影响
为了提高预测给定变更影响范围的能力,我们提出了两种适用于面向对象软件系统维护的方法。我们的第一种方法专门使用从类之间的UML关系中提取的逻辑模型,而我们的另一种混合方法额外考虑从版本历史中挖掘的信息。使用开源Hadoop系统,我们通过比较我们的影响预测与使用现有数据挖掘技术生成的预测,以及从bug报告中获得的实际更改集,来评估我们的方法。我们表明,当系统不成熟且版本历史未建立时,我们的两种方法都可以产生更好的预测,并且随着系统的发展,我们的混合方法可以产生与数据挖掘相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信