{"title":"Hydrodynamics Around a Deep-Draft Semi-Submersible With Various Corner Shapes","authors":"Yibo Liang, L. Tao","doi":"10.1115/OMAE2018-77135","DOIUrl":null,"url":null,"abstract":"A numerical study on flow over a stationary deep-draft semi-submersible (DDS) with various corner shapes was carried out to investigate the corner shape effects on the overall hydrodynamics. Three models based on a typical DDS design with different corner shapes were numerically investigated under 45° incidence. The present numerical model has been validated by an experimental test carried out in a circulating water channel. It is demonstrated that, as the corner shape design changed, the hydrodynamic characteristics alter drastically. In addition, the flow patterns were examined to reveal some insights of the fluid physics due to the changing of different corner shape designs. The detailed numerical results from the geometric study will provide a good guidance for future practical designs.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"77 Suppl 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A numerical study on flow over a stationary deep-draft semi-submersible (DDS) with various corner shapes was carried out to investigate the corner shape effects on the overall hydrodynamics. Three models based on a typical DDS design with different corner shapes were numerically investigated under 45° incidence. The present numerical model has been validated by an experimental test carried out in a circulating water channel. It is demonstrated that, as the corner shape design changed, the hydrodynamic characteristics alter drastically. In addition, the flow patterns were examined to reveal some insights of the fluid physics due to the changing of different corner shape designs. The detailed numerical results from the geometric study will provide a good guidance for future practical designs.