Bootstrapping Samples of Accidentals in Dense Piano Scores for CNN-Based Detection

Kwon-Young Choi, Bertrand Coüasnon, Y. Ricquebourg, R. Zanibbi
{"title":"Bootstrapping Samples of Accidentals in Dense Piano Scores for CNN-Based Detection","authors":"Kwon-Young Choi, Bertrand Coüasnon, Y. Ricquebourg, R. Zanibbi","doi":"10.1109/ICDAR.2017.257","DOIUrl":null,"url":null,"abstract":"State-of-the-art Optical Music Recognition system often fails to process dense and damaged music scores, where many symbols can present complex segmentation problems. We propose to resolve these segmentation problems by using a CNN-based detector trained with few manually annotated data. A data augmentation bootstrapping method is used to accurately train a deep learning model to do the localization and classification of an accidental symbol associated with a note head, or the note head if there is no accidental. Using 5-fold cross-validation, we obtain an average of 98.5% localization with an IoU score over 0.5 and a classification accuracy of 99.2%.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

State-of-the-art Optical Music Recognition system often fails to process dense and damaged music scores, where many symbols can present complex segmentation problems. We propose to resolve these segmentation problems by using a CNN-based detector trained with few manually annotated data. A data augmentation bootstrapping method is used to accurately train a deep learning model to do the localization and classification of an accidental symbol associated with a note head, or the note head if there is no accidental. Using 5-fold cross-validation, we obtain an average of 98.5% localization with an IoU score over 0.5 and a classification accuracy of 99.2%.
基于cnn的密集钢琴乐谱中意外样本的自举检测
最先进的光学音乐识别系统往往不能处理密集和损坏的乐谱,其中许多符号可能会带来复杂的分割问题。我们建议通过使用基于cnn的检测器来解决这些分割问题,该检测器使用少量人工注释数据进行训练。使用数据增强自举方法准确训练深度学习模型,对与注释头相关的意外符号进行定位和分类,如果没有意外,则使用注释头。使用5倍交叉验证,我们获得了平均98.5%的定位,IoU评分超过0.5,分类准确率为99.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信