Yuichiro Fujimoto, Goshiro Yamamoto, Takafumi Taketomi, C. Sandor, H. Kato
{"title":"[POSTER] Pseudo Printed Fabrics through Projection Mapping","authors":"Yuichiro Fujimoto, Goshiro Yamamoto, Takafumi Taketomi, C. Sandor, H. Kato","doi":"10.1109/ISMAR.2015.51","DOIUrl":null,"url":null,"abstract":"Projection-based Augmented Reality commonly projects on rigid objects, while only few systems project on deformable objects. In this paper, we present Pseudo Printed Fabrics (PPF), which enables the projection on a deforming piece of cloth. This can be applied to previewing a cloth design while manipulating its shape. We support challenging manipulations, including heavy occlusions and stretching the cloth. In previous work, we developed a similar system, based on a novel marker pattern; PPF extends it in two important aspects. First, we improved performance by two orders of magnitudes to achieve interactive performance. Second, we developed a new interpolation algorithm to keep registration during challenging manipulations. We believe that PPF can be applied to domains including virtual-try on and fashion design.","PeriodicalId":240196,"journal":{"name":"2015 IEEE International Symposium on Mixed and Augmented Reality","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2015.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Projection-based Augmented Reality commonly projects on rigid objects, while only few systems project on deformable objects. In this paper, we present Pseudo Printed Fabrics (PPF), which enables the projection on a deforming piece of cloth. This can be applied to previewing a cloth design while manipulating its shape. We support challenging manipulations, including heavy occlusions and stretching the cloth. In previous work, we developed a similar system, based on a novel marker pattern; PPF extends it in two important aspects. First, we improved performance by two orders of magnitudes to achieve interactive performance. Second, we developed a new interpolation algorithm to keep registration during challenging manipulations. We believe that PPF can be applied to domains including virtual-try on and fashion design.