Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes

Umberto Martínez-Peñas, F. Kschischang
{"title":"Reliable and Secure Multishot Network Coding using Linearized Reed-Solomon Codes","authors":"Umberto Martínez-Peñas, F. Kschischang","doi":"10.1109/ALLERTON.2018.8635644","DOIUrl":null,"url":null,"abstract":"Multishot network coding is considered in a worst-case adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to $\\rho$ packets, and wire-tap up to $\\mu$ links, all throughout $\\ell$ shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of $\\ell n'-2t-\\rho-\\mu$ packets, where $n'$ is the number of outgoing links at the source, for any packet length $m \\geq n'$ (largest possible range), with only the restriction that $\\ell \\lt q$ (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. A Welch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length $n = \\ell n'$, and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Multishot network coding is considered in a worst-case adversarial setting in which an omniscient adversary with unbounded computational resources may inject erroneous packets in up to t links, erase up to $\rho$ packets, and wire-tap up to $\mu$ links, all throughout $\ell$ shots of a (random) linearly-coded network. Assuming no knowledge of the underlying linear network code (in particular, the network topology and underlying linear code may change with time), a coding scheme achieving zero-error communication and perfect secrecy is obtained based on linearized Reed-Solomon codes. The scheme achieves the maximum possible secret message size of $\ell n'-2t-\rho-\mu$ packets, where $n'$ is the number of outgoing links at the source, for any packet length $m \geq n'$ (largest possible range), with only the restriction that $\ell \lt q$ (size of the base field). By lifting this construction, coding schemes for non-coherent communication are obtained with information rates close to optimal for practical instances. A Welch-Berlekamp sum-rank decoding algorithm for linearized Reed-Solomon codes is provided, having quadratic complexity in the total length $n = \ell n'$, and which can be adapted to handle not only errors, but also erasures, wire-tap observations and non-coherent communication.
基于线性化Reed-Solomon码的可靠安全多镜头网络编码
多镜头网络编码是在最坏情况下的对抗设置中考虑的,在这种情况下,具有无限计算资源的无所不知的对手可能会在多达t个链接中注入错误的数据包,删除多达$\rho$个数据包,并在(随机)线性编码网络的$\ell$个镜头中连接到$\mu$个链接。假设不知道底层线性网络代码(特别是网络拓扑和底层线性代码可能随时间变化),基于线性化的Reed-Solomon码,得到了一种实现零错误通信和完全保密的编码方案。对于任何包长度$m \geq n'$(最大可能范围),该方案实现$\ell n'-2t-\rho-\mu$包的最大可能秘密消息大小,其中$n'$是源的传出链接数,只有$\ell \lt q$(基本字段的大小)的限制。通过改进这一结构,得到了实际应用中信息率接近最优的非相干通信编码方案。提出了一种用于线性化里德-所罗门码的Welch-Berlekamp和秩解码算法,该算法的总长度为$n = \ell n'$,具有二次复杂度,不仅可以处理错误,还可以处理擦除、窃听观察和非相干通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信