Spatio-Temporal Modeling of Absence Epileptic Seizures Using Depth Recordings

S. Akhavan, M. Kamarei, H. Soltanian-Zadeh
{"title":"Spatio-Temporal Modeling of Absence Epileptic Seizures Using Depth Recordings","authors":"S. Akhavan, M. Kamarei, H. Soltanian-Zadeh","doi":"10.1109/EUROCON.2019.8861938","DOIUrl":null,"url":null,"abstract":"In this study, we spatially and temporally analyze the absence epileptic seizures recorded from different layers of somatosensory cortex of a Genetic Absence Epileptic Rat from Strasbourg (GAERS). Synchronous appearance of spikes in different layers of somatosensory cortex during the seizures is the most important indication of the recorded data because the data were recorded locally. In fact, when one spike appears during the seizures, we can consider a spike matrix comprising the spikes recorded from different layers of somatosensory cortex. We describe these spike matrices by a spatio-temporal model. Then, we estimate the model parameters using a factor analysis method. Experimental results show that there are two factors which randomly combine with a background factor and generate the spike matrices of absence seizures. Moreover, it is shown that the spike matrices originate from the bottom and the top layers of somatosensory cortex. We also propose a validation framework to show the generality of the obtained spatio-temporal analysis in different absence seizures.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we spatially and temporally analyze the absence epileptic seizures recorded from different layers of somatosensory cortex of a Genetic Absence Epileptic Rat from Strasbourg (GAERS). Synchronous appearance of spikes in different layers of somatosensory cortex during the seizures is the most important indication of the recorded data because the data were recorded locally. In fact, when one spike appears during the seizures, we can consider a spike matrix comprising the spikes recorded from different layers of somatosensory cortex. We describe these spike matrices by a spatio-temporal model. Then, we estimate the model parameters using a factor analysis method. Experimental results show that there are two factors which randomly combine with a background factor and generate the spike matrices of absence seizures. Moreover, it is shown that the spike matrices originate from the bottom and the top layers of somatosensory cortex. We also propose a validation framework to show the generality of the obtained spatio-temporal analysis in different absence seizures.
利用深度记录对失神癫痫发作的时空建模
在这项研究中,我们对来自斯特拉斯堡(GAERS)的遗传缺失癫痫大鼠(遗传性缺失癫痫大鼠)不同层体感觉皮层记录的缺失癫痫发作进行了空间和时间分析。在癫痫发作期间,体感觉皮层的不同层同步出现的尖峰是记录数据的最重要的指示,因为数据是局部记录的。事实上,当癫痫发作时出现一个尖峰时,我们可以考虑一个尖峰矩阵,包括从体感皮层的不同层记录的尖峰。我们用一个时空模型来描述这些脉冲矩阵。然后,我们使用因子分析法估计模型参数。实验结果表明,有两个因素与一个背景因素随机结合,生成失神发作的峰值矩阵。此外,研究表明,刺突基质起源于体感觉皮层的底层和顶层。我们还提出了一个验证框架,以显示在不同的失神发作中获得的时空分析的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信