Comparison of Disease Specific Sub-Network Identification Programs

Beyhan Adanur, B. Gungor
{"title":"Comparison of Disease Specific Sub-Network Identification Programs","authors":"Beyhan Adanur, B. Gungor","doi":"10.1109/UBMK.2018.8566663","DOIUrl":null,"url":null,"abstract":"Active sub-network search aims to identify a group of interconnected genes in a protein-protein interaction network that contains most of the disease-associated genes. In recent years, to address active sub-network search problem, various algorithms and programs are developed. In this study, performances of disease specific sub-network identification programs are compared. The same input dataset is run in jActiveModules, ActiveSubnetworkGA, CytoHubba, ClusterViz, MCODE, CytoMOBAS, PathFindR, PINBPA and PEWCC programs. Then, functional enrichment analysis is applied on obtained sub-networks. Finally, they are compared according to the results of GO Enrichment Analysis. In addition to these, work performances, features and requirements of programs are compared.","PeriodicalId":293249,"journal":{"name":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2018.8566663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Active sub-network search aims to identify a group of interconnected genes in a protein-protein interaction network that contains most of the disease-associated genes. In recent years, to address active sub-network search problem, various algorithms and programs are developed. In this study, performances of disease specific sub-network identification programs are compared. The same input dataset is run in jActiveModules, ActiveSubnetworkGA, CytoHubba, ClusterViz, MCODE, CytoMOBAS, PathFindR, PINBPA and PEWCC programs. Then, functional enrichment analysis is applied on obtained sub-networks. Finally, they are compared according to the results of GO Enrichment Analysis. In addition to these, work performances, features and requirements of programs are compared.
疾病特定子网络识别程序的比较
主动子网络搜索旨在识别包含大多数疾病相关基因的蛋白质-蛋白质相互作用网络中的一组相互连接的基因。近年来,为了解决主动子网络搜索问题,开发了各种算法和程序。在本研究中,比较了疾病特定子网络识别方案的性能。相同的输入数据集在jActiveModules, ActiveSubnetworkGA, CytoHubba, ClusterViz, MCODE, CytoMOBAS, PathFindR, PINBPA和PEWCC程序中运行。然后,对得到的子网络进行功能富集分析。最后,根据GO富集分析的结果对它们进行比较。此外,还比较了各方案的工作性能、特点和要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信