C. Binder, Jounes-Alexander Gross, C. Neureiter, G. Lastro
{"title":"Investigating Emergent Behavior caused by Electric Vehicles in the Smart Grid using Co-Simulation","authors":"C. Binder, Jounes-Alexander Gross, C. Neureiter, G. Lastro","doi":"10.1109/SYSOSE.2019.8753861","DOIUrl":null,"url":null,"abstract":"Ahstract- Today's electricity system faces major challenges by the ongoing integration of decentralized, renewable energy resources and individual participants benefitting from the Internet of Things (IoT), like Electric Vehicles (EVs) or Smart Meters. The interplay of these autonomous components forms the popular term of the so-called Smart Grid. Since social mannerism may result in simultaneous charging cycles of EVs in such a System of Systems (SoS), ominous peak loads are expected to emerge. Thus, to deal with this often unpredictable behavior before implementing the system, usually a simulation is applied. Therefore, this paper proposes a co-simulation approach using Mosaik, a framework tailored to the Smart Grid domain. By doing so, the power system including several EVs and their charging strategy is modeled according to the Smart Grid Architecture Model (SGAM) in the first step. Next, in order to simulate and validate the system's emergent behavior, an excerpt of a real-world case study is utilized. Based on the outcome of this co-simulation, the practical investigation of Smart Grids can be improved by applying protruded demand side response approaches.","PeriodicalId":133413,"journal":{"name":"2019 14th Annual Conference System of Systems Engineering (SoSE)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Annual Conference System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2019.8753861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Ahstract- Today's electricity system faces major challenges by the ongoing integration of decentralized, renewable energy resources and individual participants benefitting from the Internet of Things (IoT), like Electric Vehicles (EVs) or Smart Meters. The interplay of these autonomous components forms the popular term of the so-called Smart Grid. Since social mannerism may result in simultaneous charging cycles of EVs in such a System of Systems (SoS), ominous peak loads are expected to emerge. Thus, to deal with this often unpredictable behavior before implementing the system, usually a simulation is applied. Therefore, this paper proposes a co-simulation approach using Mosaik, a framework tailored to the Smart Grid domain. By doing so, the power system including several EVs and their charging strategy is modeled according to the Smart Grid Architecture Model (SGAM) in the first step. Next, in order to simulate and validate the system's emergent behavior, an excerpt of a real-world case study is utilized. Based on the outcome of this co-simulation, the practical investigation of Smart Grids can be improved by applying protruded demand side response approaches.