{"title":"Enhancing program dependency graph based clone detection using approximate subgraph matching","authors":"C. M. Kamalpriya, Paramvir Singh","doi":"10.1109/IWSC.2017.7880511","DOIUrl":null,"url":null,"abstract":"Software code clone detection techniques and tools play a major role in improving the software quality as well as saving maintenance cost and effort. Program Dependency Graph (PDG) based clone detection techniques have a key advantage over other techniques as they are capable of detecting non-contiguous code clones in addition to contiguous clones. We propose further enhancement to current state of the art PDG-based detection to identify all possible (exact and approximate) clone relations from the obtained clone pair (PDG-based) results using Approximate Subgraph Matching (ASM). We obtain clone results of our proposed technique on three subject software systems, and validate the results on eclipse-ant from Bellon’s benchmark. We also present a new ASM-based distance measure to represent the similarity between software code clones.","PeriodicalId":222231,"journal":{"name":"2017 IEEE 11th International Workshop on Software Clones (IWSC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Workshop on Software Clones (IWSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSC.2017.7880511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Software code clone detection techniques and tools play a major role in improving the software quality as well as saving maintenance cost and effort. Program Dependency Graph (PDG) based clone detection techniques have a key advantage over other techniques as they are capable of detecting non-contiguous code clones in addition to contiguous clones. We propose further enhancement to current state of the art PDG-based detection to identify all possible (exact and approximate) clone relations from the obtained clone pair (PDG-based) results using Approximate Subgraph Matching (ASM). We obtain clone results of our proposed technique on three subject software systems, and validate the results on eclipse-ant from Bellon’s benchmark. We also present a new ASM-based distance measure to represent the similarity between software code clones.