The Delta-framework

F. Honsell, L. Liquori, C. Stolze, Ivan Scagnetto
{"title":"The Delta-framework","authors":"F. Honsell, L. Liquori, C. Stolze, Ivan Scagnetto","doi":"10.4230/LIPIcs.FSTTCS.2018.37","DOIUrl":null,"url":null,"abstract":"We introduce the Delta-framework, LF-Delta, a dependent type theory based on the Edinburgh Logical Framework LF, extended with the strong proof-functional connectives, i.e. strong intersection, minimal relevant implication and strong union. Strong proof-functional connectives take into account the shape of logical proofs, thus reflecting polymorphic features of proofs in formulae. This is in contrast to classical or intuitionistic connectives where the meaning of a compound formula depends only on the truth value or the provability of its subformulae. Our framework encompasses a wide range of type disciplines. Moreover, since relevant implication permits to express subtyping, LF-Delta subsumes also Pfenning's refinement types. We discuss the design decisions which have led us to the formulation of LF-Delta, study its metatheory, and provide various examples of applications. Our strong proof-functional type theory can be plugged in existing common proof assistants.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the Delta-framework, LF-Delta, a dependent type theory based on the Edinburgh Logical Framework LF, extended with the strong proof-functional connectives, i.e. strong intersection, minimal relevant implication and strong union. Strong proof-functional connectives take into account the shape of logical proofs, thus reflecting polymorphic features of proofs in formulae. This is in contrast to classical or intuitionistic connectives where the meaning of a compound formula depends only on the truth value or the provability of its subformulae. Our framework encompasses a wide range of type disciplines. Moreover, since relevant implication permits to express subtyping, LF-Delta subsumes also Pfenning's refinement types. We discuss the design decisions which have led us to the formulation of LF-Delta, study its metatheory, and provide various examples of applications. Our strong proof-functional type theory can be plugged in existing common proof assistants.
的Delta-framework
在爱丁堡逻辑框架LF的基础上,利用强证明-功能连接词(强交、最小相关蕴涵和强并)扩展了依赖类型理论delta -框架LF- delta。强证明-功能连接词考虑了逻辑证明的形状,从而反映了证明在公式中的多态特征。这与经典或直觉连接词相反,在经典或直觉连接词中,复合公式的意义仅取决于其真值或其子公式的可证明性。我们的框架涵盖了广泛的类型学科。此外,由于相关暗示允许表达子类型,LF-Delta也包含了Pfenning的细化类型。我们讨论了导致我们形成LF-Delta公式的设计决策,研究了它的元理论,并提供了各种应用实例。我们的强证明功能类型理论可以插入到现有的通用证明助手中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信