Generating Spectrum Images from Different Types - Visible, Thermal, and Infrared Based on Autoencoder Architecture (GVTI-AE)

S. Jameel, Jafar Majidpour
{"title":"Generating Spectrum Images from Different Types - Visible, Thermal, and Infrared Based on Autoencoder Architecture (GVTI-AE)","authors":"S. Jameel, Jafar Majidpour","doi":"10.1142/S021946782250005X","DOIUrl":null,"url":null,"abstract":"Recently, numerous challenging problems have existed for transforming different image types (thermal infrared (TIR), visible spectrum, and near-infrared (NIR)). Other types of cameras may lack the ability and features of certain types of frequently-used cameras that produce different types of images. Based on camera features, different applications might emerge from observing a scenario under specific conditions (darkness, fog, night, day, and artificial light). We need to jump from one field to another to understand the scenario better. This paper proposes a fully automatic model (GVTI-AE) to manipulate the transformation into different types of vibrant, realistic images using the AutoEncoder method, which requires neither pre-nor post-processing or any user input. The experiments carried out using the GVTI-AE model showed that the perceptually realistic results produced in the widely available datasets (Tecnocampus Hand Image Database, Carl dataset, and IRIS Thermal/Visible Face Database).","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S021946782250005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, numerous challenging problems have existed for transforming different image types (thermal infrared (TIR), visible spectrum, and near-infrared (NIR)). Other types of cameras may lack the ability and features of certain types of frequently-used cameras that produce different types of images. Based on camera features, different applications might emerge from observing a scenario under specific conditions (darkness, fog, night, day, and artificial light). We need to jump from one field to another to understand the scenario better. This paper proposes a fully automatic model (GVTI-AE) to manipulate the transformation into different types of vibrant, realistic images using the AutoEncoder method, which requires neither pre-nor post-processing or any user input. The experiments carried out using the GVTI-AE model showed that the perceptually realistic results produced in the widely available datasets (Tecnocampus Hand Image Database, Carl dataset, and IRIS Thermal/Visible Face Database).
基于自动编码器架构(GVTI-AE)的可见光、热成像和红外光谱图像生成
近年来,不同类型的图像(热红外(TIR)、可见光谱和近红外(NIR))的转换存在许多具有挑战性的问题。其他类型的相机可能缺乏某些类型的常用相机的能力和功能,产生不同类型的图像。根据相机的功能,在特定条件下(黑暗、雾、夜晚、白天和人造光)观察场景可能会出现不同的应用程序。我们需要从一个领域跳到另一个领域,以便更好地理解这个场景。本文提出了一种全自动模型(GVTI-AE),利用AutoEncoder方法将图像转换成不同类型的充满活力的逼真图像,该模型既不需要预处理,也不需要后处理,也不需要用户输入。使用GVTI-AE模型进行的实验表明,在广泛可用的数据集(Tecnocampus Hand Image Database, Carl dataset和IRIS Thermal/Visible Face Database)中产生的感知逼真的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信