Very deep convolutional neural network based image classification using small training sample size

Shuying Liu, Weihong Deng
{"title":"Very deep convolutional neural network based image classification using small training sample size","authors":"Shuying Liu, Weihong Deng","doi":"10.1109/ACPR.2015.7486599","DOIUrl":null,"url":null,"abstract":"Since Krizhevsky won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition with the brilliant deep convolutional neural networks (D-CNNs), researchers have designed lots of D-CNNs. However, almost all the existing very deep convolutional neural networks are trained on the giant ImageNet datasets. Small datasets like CIFAR-10 has rarely taken advantage of the power of depth since deep models are easy to overfit. In this paper, we proposed a modified VGG-16 network and used this model to fit CIFAR-10. By adding stronger regularizer and using Batch Normalization, we achieved 8.45% error rate on CIFAR-10 without severe overfitting. Our results show that the very deep CNN can be used to fit small datasets with simple and proper modifications and don't need to re-design specific small networks. We believe that if a model is strong enough to fit a large dataset, it can also fit a small one.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"643","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 643

Abstract

Since Krizhevsky won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition with the brilliant deep convolutional neural networks (D-CNNs), researchers have designed lots of D-CNNs. However, almost all the existing very deep convolutional neural networks are trained on the giant ImageNet datasets. Small datasets like CIFAR-10 has rarely taken advantage of the power of depth since deep models are easy to overfit. In this paper, we proposed a modified VGG-16 network and used this model to fit CIFAR-10. By adding stronger regularizer and using Batch Normalization, we achieved 8.45% error rate on CIFAR-10 without severe overfitting. Our results show that the very deep CNN can be used to fit small datasets with simple and proper modifications and don't need to re-design specific small networks. We believe that if a model is strong enough to fit a large dataset, it can also fit a small one.
基于深度卷积神经网络的小样本图像分类
自从Krizhevsky凭借出色的深度卷积神经网络(d - cnn)赢得2012年ImageNet大规模视觉识别挑战赛(ILSVRC)以来,研究人员设计了大量的d - cnn。然而,几乎所有现有的深度卷积神经网络都是在巨大的ImageNet数据集上训练的。像CIFAR-10这样的小数据集很少利用深度的力量,因为深度模型很容易过拟合。在本文中,我们提出了一个改进的VGG-16网络,并使用该模型拟合CIFAR-10。通过添加更强的正则化器并使用批处理归一化,我们在没有严重过拟合的情况下实现了8.45%的错误率。我们的结果表明,非常深的CNN可以通过简单和适当的修改来拟合小数据集,而不需要重新设计特定的小网络。我们相信,如果一个模型足够强大,可以适应大型数据集,那么它也可以适应小型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信