Automatic Facial Emotion Recognition using Convolutional Neural Networks

Sushil Kumar, R. Yadav
{"title":"Automatic Facial Emotion Recognition using Convolutional Neural Networks","authors":"Sushil Kumar, R. Yadav","doi":"10.1109/SPIN52536.2021.9566134","DOIUrl":null,"url":null,"abstract":"The primary aim of this work is to analyze the potential of artificial intelligence in the field of automatic facial emotion recognition (AFER). Therefore, convolutional neural network is considered for classifying the 6 universal facial expressions. The feed-forward artificial neural network is also designed for comparative analysis. The designed techniques are implemented on extended Cohn-Kanade (CK+) database. Rigorous experimentation is carried out in order to analyze the efficacy of the suggested AFER scheme using different performance measures. It is revealed from the analysis that convolutional neural network-based classification proves to be superior in terms of accuracy, precision, recall and F1 score, as compared to the feedforward neural network-based classification scheme.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary aim of this work is to analyze the potential of artificial intelligence in the field of automatic facial emotion recognition (AFER). Therefore, convolutional neural network is considered for classifying the 6 universal facial expressions. The feed-forward artificial neural network is also designed for comparative analysis. The designed techniques are implemented on extended Cohn-Kanade (CK+) database. Rigorous experimentation is carried out in order to analyze the efficacy of the suggested AFER scheme using different performance measures. It is revealed from the analysis that convolutional neural network-based classification proves to be superior in terms of accuracy, precision, recall and F1 score, as compared to the feedforward neural network-based classification scheme.
基于卷积神经网络的自动面部情绪识别
本工作的主要目的是分析人工智能在自动面部情感识别(AFER)领域的潜力。因此,考虑使用卷积神经网络对6种通用的面部表情进行分类。设计了前馈人工神经网络进行对比分析。所设计的技术在扩展的Cohn-Kanade (CK+)数据库上实现。采用不同的性能指标,进行了严格的实验,以分析所建议的AFER方案的有效性。分析表明,与前馈神经网络分类方案相比,基于卷积神经网络的分类方案在准确率、精密度、查全率和F1分数等方面都具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信