Modular functors, cohomological field theories, and topological recursion

J. Andersen, G. Borot, N. Orantin
{"title":"Modular functors, cohomological field\n theories, and topological recursion","authors":"J. Andersen, G. Borot, N. Orantin","doi":"10.1090/PSPUM/100/01772","DOIUrl":null,"url":null,"abstract":"Given a topological modular functor $\\mathcal{V}$ in the sense of Walker \\cite{Walker}, we construct vector bundles over $\\bar{\\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\\psi$-classes in $\\bar{\\mathcal{M}}_{g,n}$ is computed by the topological recursion of \\cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n}) = \\dim \\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\\vec{\\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is the Verlinde bundle).","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Given a topological modular functor $\mathcal{V}$ in the sense of Walker \cite{Walker}, we construct vector bundles over $\bar{\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\psi$-classes in $\bar{\mathcal{M}}_{g,n}$ is computed by the topological recursion of \cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n}) = \dim \mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\vec{\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ is the Verlinde bundle).
模函子,上同调场论,和拓扑递归
给定一个Walker \cite{Walker}意义上的拓扑模函子$\mathcal{V}$,我们构造了$\bar{\mathcal{M}}_{g,n}$上的向量束,其Chern类定义了半简单上同调场论。这种构造依赖于Dehn扭转和中心元作用的特征值的对数的确定。我们表明,对于我们描述的局部谱曲线,通过\cite{EOFg}的拓扑递归计算了$\bar{\mathcal{M}}_{g,n}$中Chern类与$\psi$ -类的交集。特别是,我们将展示如何从拓扑递归中检索维度$D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n}) = \dim \mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$的Verlinde公式。我们用两个例子来分析我们的结果的后果:与有限群$G$相关的模函子(其中$D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$枚举了在含有$\vec{\lambda}$指定的$n$边界条件的$g$表面上的某些$G$ -原理束),以及与简单单连通李群$G$相关的由wesszumino - witten共形场理论获得的模函子(其中$\mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$是Verlinde束)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信