Blind separation of audio sources using modal decomposition

A. Aïssa-El-Bey, K. Abed-Meraim, Y. Grenier
{"title":"Blind separation of audio sources using modal decomposition","authors":"A. Aïssa-El-Bey, K. Abed-Meraim, Y. Grenier","doi":"10.1109/ISSPA.2005.1580972","DOIUrl":null,"url":null,"abstract":"This paper introduces new algorithms for the blind separation of audio sources using modal decomposition. Indeed, audio signals and, in particular, musical signals can be well approximated by a sum of damped sinusoidal (modal) components. Based on this representation, we propose a two steps approach consisting of a signal analysis (extraction of the modal components) followed by a signal synthesis (pairing of the components belonging to the same source) using vector clustering. For the signal analysis, two algorithms are considered and compared: namely the EMD (Empirical Mode Decomposition) algorithm and a parametric estimation algorithm using ESPRIT technique. A major advantage of the proposed method resides in its ability to separate more sources than sensors. Simulation results are given to compare and assess the performances of the proposed algorithms.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper introduces new algorithms for the blind separation of audio sources using modal decomposition. Indeed, audio signals and, in particular, musical signals can be well approximated by a sum of damped sinusoidal (modal) components. Based on this representation, we propose a two steps approach consisting of a signal analysis (extraction of the modal components) followed by a signal synthesis (pairing of the components belonging to the same source) using vector clustering. For the signal analysis, two algorithms are considered and compared: namely the EMD (Empirical Mode Decomposition) algorithm and a parametric estimation algorithm using ESPRIT technique. A major advantage of the proposed method resides in its ability to separate more sources than sensors. Simulation results are given to compare and assess the performances of the proposed algorithms.
使用模态分解的音频源盲分离
介绍了基于模态分解的音频源盲分离新算法。实际上,音频信号,特别是音乐信号可以很好地近似为阻尼正弦(模态)分量的总和。基于这种表示,我们提出了一种两步方法,包括信号分析(提取模态分量),然后使用向量聚类进行信号合成(属于同一来源的分量配对)。对于信号分析,考虑并比较了两种算法:EMD (Empirical Mode Decomposition)算法和使用ESPRIT技术的参数估计算法。该方法的一个主要优点在于它比传感器能够分离更多的源。仿真结果比较和评估了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信