Auto-SCMA: Learning Codebook for Sparse Code Multiple Access using Machine Learning

Ekagra Ranjan, Ameya Vikram, A. Rajesh, P. Bora
{"title":"Auto-SCMA: Learning Codebook for Sparse Code Multiple Access using Machine Learning","authors":"Ekagra Ranjan, Ameya Vikram, A. Rajesh, P. Bora","doi":"10.1109/NCC52529.2021.9530173","DOIUrl":null,"url":null,"abstract":"Sparse Code Multiple Access (SCMA) is an effective non-orthogonal multiple access technique that facilitates communication among users with limited orthogonal resources. Currently, its performance is limited by the quality of the handcrafted codebook. We propose Auto-SCMA, a machine learning based approach that learns the codebook using gradient descent while using a Message Passing Algorithm decoder. It is the first machine learning based approach to generalize successfully on the Rayleigh fading channel. It is able to learn an effective codebook without involving any human effort in the process. Our experimental results show that Auto-SCMA outperforms previous methods including machine learning based methods.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sparse Code Multiple Access (SCMA) is an effective non-orthogonal multiple access technique that facilitates communication among users with limited orthogonal resources. Currently, its performance is limited by the quality of the handcrafted codebook. We propose Auto-SCMA, a machine learning based approach that learns the codebook using gradient descent while using a Message Passing Algorithm decoder. It is the first machine learning based approach to generalize successfully on the Rayleigh fading channel. It is able to learn an effective codebook without involving any human effort in the process. Our experimental results show that Auto-SCMA outperforms previous methods including machine learning based methods.
Auto-SCMA:使用机器学习的稀疏代码多址学习代码本
稀疏码多址(SCMA)是一种有效的非正交多址技术,可以在正交资源有限的情况下方便用户间的通信。目前,它的性能受到手工制作密码本质量的限制。我们提出了Auto-SCMA,这是一种基于机器学习的方法,在使用消息传递算法解码器的同时使用梯度下降来学习码本。这是第一个在瑞利衰落信道上成功泛化的机器学习方法。它能够在不涉及任何人工努力的情况下学习有效的密码本。我们的实验结果表明,Auto-SCMA优于以前的方法,包括基于机器学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信