{"title":"Fixed points of the equivariant algebraic $K$-theory of spaces","authors":"Bernard Badzioch, Wojciech Dorabiała","doi":"10.1090/PROC/13584","DOIUrl":null,"url":null,"abstract":"In a recent work Malkiewich and Merling proposed a definition of the equivariant $K$-theory of spaces for spaces equipped with an action of a finite group. We show that the fixed points of this spectrum admit a tom Dieck-type splitting. We also show that this splitting is compatible with the splitting of the equivariant suspension spectrum. The first of these results has been obtained independently by John Rognes.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/13584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In a recent work Malkiewich and Merling proposed a definition of the equivariant $K$-theory of spaces for spaces equipped with an action of a finite group. We show that the fixed points of this spectrum admit a tom Dieck-type splitting. We also show that this splitting is compatible with the splitting of the equivariant suspension spectrum. The first of these results has been obtained independently by John Rognes.