Parameter Estimation of Hybrid Fractional-Order Hammerstein-Wiener Box-Jenkins Models Using RIVCF Method

W. Allafi, Cheng Zhang, D. Quang, J. Marco, K. Uddin
{"title":"Parameter Estimation of Hybrid Fractional-Order Hammerstein-Wiener Box-Jenkins Models Using RIVCF Method","authors":"W. Allafi, Cheng Zhang, D. Quang, J. Marco, K. Uddin","doi":"10.1109/ICSENG.2018.8638015","DOIUrl":null,"url":null,"abstract":"This paper proposes a parameter estimation algorithm for A hybrid Box-Jenkins model where the fractional-order Hammerstein-Wiener continuous-time (HWFC) system represent the noise-free system corrupted by coloured noise generated by a discrete-time integer-order sub-model. The HWFC consist of input static nonlinear, continuous-time fractional-order linear and output static nonlinear sub-models. In this paper, the simplified refined instrumental variable algorithm is extended to estimate the system parameters with the existence of the discrete-time integer-order sub-model which described by auto-regressive moving average (ARMA) process. Measured input-output data is used for parameterizing the model with fewer conditions and assumptions, for example, the static nonlinearity of the Wiener part is not required to be invertible. The proposed approach estimates the parameters of the nonlinear and linear sub-models in an iterative manner. Monte Carlo simulation analysis shows the proposed algorithm provides accurate and fast converged estimates of the fractional-order Hammerstein-Wiener hybrid Box-Jenkins model.","PeriodicalId":356324,"journal":{"name":"2018 26th International Conference on Systems Engineering (ICSEng)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Systems Engineering (ICSEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENG.2018.8638015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a parameter estimation algorithm for A hybrid Box-Jenkins model where the fractional-order Hammerstein-Wiener continuous-time (HWFC) system represent the noise-free system corrupted by coloured noise generated by a discrete-time integer-order sub-model. The HWFC consist of input static nonlinear, continuous-time fractional-order linear and output static nonlinear sub-models. In this paper, the simplified refined instrumental variable algorithm is extended to estimate the system parameters with the existence of the discrete-time integer-order sub-model which described by auto-regressive moving average (ARMA) process. Measured input-output data is used for parameterizing the model with fewer conditions and assumptions, for example, the static nonlinearity of the Wiener part is not required to be invertible. The proposed approach estimates the parameters of the nonlinear and linear sub-models in an iterative manner. Monte Carlo simulation analysis shows the proposed algorithm provides accurate and fast converged estimates of the fractional-order Hammerstein-Wiener hybrid Box-Jenkins model.
基于RIVCF的分数阶Hammerstein-Wiener Box-Jenkins混合模型参数估计
本文提出了一种混合Box-Jenkins模型的参数估计算法,其中分数阶Hammerstein-Wiener连续时间(HWFC)系统表示由离散时间整数阶子模型产生的有色噪声破坏的无噪声系统。HWFC由输入静态非线性子模型、连续时间分数阶线性子模型和输出静态非线性子模型组成。本文将简化的精化仪器变量算法推广到用自回归移动平均(ARMA)过程描述的离散时间整阶子模型存在的情况下估计系统参数。测量的输入输出数据用于参数化模型,条件和假设较少,例如,维纳部分的静态非线性不要求可逆。该方法以迭代的方式估计非线性和线性子模型的参数。蒙特卡罗仿真分析表明,该算法对分数阶Hammerstein-Wiener混合Box-Jenkins模型提供了准确、快速的收敛估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信