Sampling-based path planning with goal oriented sampling

Gitae Kang, Y. Kim, W. You, Young Hun Lee, H. Oh, H. Moon, Hyoukryeol Choi
{"title":"Sampling-based path planning with goal oriented sampling","authors":"Gitae Kang, Y. Kim, W. You, Young Hun Lee, H. Oh, H. Moon, Hyoukryeol Choi","doi":"10.1109/AIM.2016.7576947","DOIUrl":null,"url":null,"abstract":"Path planning in complicated environments is a time consuming and computationally expensive task. Especially in high-dimensional configuration spaces with complex obstacles, searching for a proper path while avoiding collisions is still challenging. This paper presents an improved sampling-based algorithm, called the Goal Oriented sampling method (GO sampling) that quickly generates an initial solution overcoming these problems. GO sampling extends the sampling method of the Rapidly-exploring Random Tree (RRT) algorithm. GO sampling is able to identify the initial solution in a shorter time than that of the RRT algorithm and shows significant improvement in computational efficiency. The algorithm is evaluated with simulations in 2D and 3D space.","PeriodicalId":154457,"journal":{"name":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2016.7576947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Path planning in complicated environments is a time consuming and computationally expensive task. Especially in high-dimensional configuration spaces with complex obstacles, searching for a proper path while avoiding collisions is still challenging. This paper presents an improved sampling-based algorithm, called the Goal Oriented sampling method (GO sampling) that quickly generates an initial solution overcoming these problems. GO sampling extends the sampling method of the Rapidly-exploring Random Tree (RRT) algorithm. GO sampling is able to identify the initial solution in a shorter time than that of the RRT algorithm and shows significant improvement in computational efficiency. The algorithm is evaluated with simulations in 2D and 3D space.
目标导向采样的基于采样的路径规划
复杂环境下的路径规划是一项耗时且计算量大的任务。特别是在具有复杂障碍物的高维构型空间中,在避免碰撞的同时寻找合适的路径仍然是一个挑战。本文提出了一种改进的基于采样的算法,称为目标导向采样方法(GO采样),它可以快速生成克服这些问题的初始解。GO采样扩展了快速探索随机树(RRT)算法的采样方法。与RRT算法相比,GO采样能够在更短的时间内识别初始解,并且在计算效率上有显著提高。通过二维和三维仿真对该算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信