Recency, records and recaps: learning and non-equilibrium behavior in a simple decision problem

D. Fudenberg, A. Peysakhovich
{"title":"Recency, records and recaps: learning and non-equilibrium behavior in a simple decision problem","authors":"D. Fudenberg, A. Peysakhovich","doi":"10.2139/ssrn.2339862","DOIUrl":null,"url":null,"abstract":"Nash equilibrium takes optimization as a primitive, but suboptimal behavior can persist in simple stochastic decision problems. This has motivated the development of other equilibrium concepts such as cursed equilibrium and behavioral equilibrium. We experimentally study a simple adverse selection (or 'lemons') problem and find that learning models that heavily discount past information (i.e. display recency bias) explain patterns of behavior better than Nash, cursed or behavioral equilibrium. Providing counterfactual information or a record of past outcomes does little to aid convergence to optimal strategies, but providing sample averages ('recaps') gets individuals most of the way to optimality. Thus recency effects are not solely due to limited memory but stem from some other form of cognitive constraints. Our results show the importance of going beyond static optimization and incorporating features of human learning into economic models.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2339862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Nash equilibrium takes optimization as a primitive, but suboptimal behavior can persist in simple stochastic decision problems. This has motivated the development of other equilibrium concepts such as cursed equilibrium and behavioral equilibrium. We experimentally study a simple adverse selection (or 'lemons') problem and find that learning models that heavily discount past information (i.e. display recency bias) explain patterns of behavior better than Nash, cursed or behavioral equilibrium. Providing counterfactual information or a record of past outcomes does little to aid convergence to optimal strategies, but providing sample averages ('recaps') gets individuals most of the way to optimality. Thus recency effects are not solely due to limited memory but stem from some other form of cognitive constraints. Our results show the importance of going beyond static optimization and incorporating features of human learning into economic models.
近因、记录与回顾:简单决策问题中的学习与非平衡行为
纳什均衡以优化为基本概念,但在简单的随机决策问题中,次优行为可能持续存在。这推动了其他均衡概念的发展,如诅咒均衡和行为均衡。我们通过实验研究了一个简单的逆向选择(或“柠檬”)问题,发现严重低估过去信息的学习模型(即显示近因偏差)比纳什均衡、诅咒均衡或行为均衡更好地解释了行为模式。提供反事实信息或过去结果的记录对收敛到最优策略几乎没有帮助,但提供样本平均值(“概要”)会让个人在很大程度上达到最优。因此,近因效应不仅仅是由于有限的记忆,而是源于一些其他形式的认知限制。我们的研究结果显示了超越静态优化和将人类学习特征纳入经济模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信