Motion image restoration based on sparse representation and guided filter

Hang Zuo, Liejun Wang
{"title":"Motion image restoration based on sparse representation and guided filter","authors":"Hang Zuo, Liejun Wang","doi":"10.1504/ijcsm.2019.10025674","DOIUrl":null,"url":null,"abstract":"When moving objects are present, current low-resolution blurring image reconstruction techniques with considerable noise do not perform well. This paper comes up with a new image reconstruction method based on K-SVD algorithm and guided filter technique. This method uses K-SVD to pre-process the image first and apply canny boundary detector to obtain clear boundaries as prior model, thus we can estimate blurring kernel. Last, we apply guided filter to reconstruct our image. We do the second and third step iteration to obtain clear images. This paper uses simulated degeneration and actual low-resolution blurring image for experiments and our result implies this method has good performance for reconstruction.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2019.10025674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When moving objects are present, current low-resolution blurring image reconstruction techniques with considerable noise do not perform well. This paper comes up with a new image reconstruction method based on K-SVD algorithm and guided filter technique. This method uses K-SVD to pre-process the image first and apply canny boundary detector to obtain clear boundaries as prior model, thus we can estimate blurring kernel. Last, we apply guided filter to reconstruct our image. We do the second and third step iteration to obtain clear images. This paper uses simulated degeneration and actual low-resolution blurring image for experiments and our result implies this method has good performance for reconstruction.
基于稀疏表示和引导滤波的运动图像恢复
当运动物体存在时,当前的低分辨率模糊图像重建技术与相当大的噪声表现不佳。本文提出了一种基于K-SVD算法和引导滤波技术的图像重建方法。该方法首先使用K-SVD对图像进行预处理,并使用canny边界检测器获得清晰的边界作为先验模型,从而估计出模糊核。最后,我们使用引导滤波对图像进行重构。我们进行第二步和第三步迭代以获得清晰的图像。本文采用模拟退化和实际低分辨率模糊图像进行实验,结果表明该方法具有良好的重建性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信