Scaling Properties of the Lorenz System and Dissipative Nambu Mechanics

M. Axenides, E. Floratos
{"title":"Scaling Properties of the Lorenz System and Dissipative Nambu Mechanics","authors":"M. Axenides, E. Floratos","doi":"10.1142/9789814602136_0002","DOIUrl":null,"url":null,"abstract":"In the framework of Nambu Mechanics, we have recently argued that Non-Hamiltonian Chaotic Flows in $ R^{3} $, are dissipation induced deformations, of integrable volume preserving flows, specified by pairs of Intersecting Surfaces in $R^{3}$. In the present work we focus our attention to the Lorenz system with a linear dissipative sector in its phase space dynamics. In this case the Intersecting Surfaces are Quadratic. We parametrize its dissipation strength through a continuous control parameter $\\epsilon$, acting homogeneously over the whole 3-dim. phase space. In the extended $\\epsilon$-Lorenz system we find a scaling relation between the dissipation strength $ \\epsilon $ and Reynolds number parameter r . It results from the scale covariance, we impose on the Lorenz equations under arbitrary rescalings of all its dynamical coordinates. Its integrable limit, ($ \\epsilon = 0 $, \\ fixed r), which is described in terms of intersecting Quadratic Nambu \"Hamiltonians\" Surfaces, gets mapped on the infinite value limit of the Reynolds number parameter (r $\\rightarrow \\infty,\\ \\epsilon= 1$). In effect weak dissipation, through small $\\epsilon$ values, generates and controls the well explored Route to Chaos in the large r-value regime. The non-dissipative $\\epsilon=0 $ integrable limit is therefore the gateway to Chaos for the Lorenz system.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"391 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814602136_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the framework of Nambu Mechanics, we have recently argued that Non-Hamiltonian Chaotic Flows in $ R^{3} $, are dissipation induced deformations, of integrable volume preserving flows, specified by pairs of Intersecting Surfaces in $R^{3}$. In the present work we focus our attention to the Lorenz system with a linear dissipative sector in its phase space dynamics. In this case the Intersecting Surfaces are Quadratic. We parametrize its dissipation strength through a continuous control parameter $\epsilon$, acting homogeneously over the whole 3-dim. phase space. In the extended $\epsilon$-Lorenz system we find a scaling relation between the dissipation strength $ \epsilon $ and Reynolds number parameter r . It results from the scale covariance, we impose on the Lorenz equations under arbitrary rescalings of all its dynamical coordinates. Its integrable limit, ($ \epsilon = 0 $, \ fixed r), which is described in terms of intersecting Quadratic Nambu "Hamiltonians" Surfaces, gets mapped on the infinite value limit of the Reynolds number parameter (r $\rightarrow \infty,\ \epsilon= 1$). In effect weak dissipation, through small $\epsilon$ values, generates and controls the well explored Route to Chaos in the large r-value regime. The non-dissipative $\epsilon=0 $ integrable limit is therefore the gateway to Chaos for the Lorenz system.
洛伦兹系统的标度性质与耗散南布力学
在Nambu力学的框架下,我们最近论证了$ R^{3} $中的非哈密顿混沌流是由$R^{3}$中相交曲面对指定的可积体积保持流的耗散诱导变形。在本工作中,我们将注意力集中在相空间动力学中具有线性耗散扇区的洛伦兹系统。在这种情况下,相交曲面是二次曲面。我们通过一个连续的控制参数$\epsilon$来参数化它的耗散强度,均匀地作用于整个3-dim。相空间。在扩展的$\epsilon$ -Lorenz系统中,我们发现耗散强度$ \epsilon $与雷诺数参数r之间存在标度关系。它是尺度协方差的结果,我们在任意重标的所有动态坐标下强加于洛伦兹方程。它的可积极限($ \epsilon = 0 $,固定r),用相交的二次南布“哈密顿”曲面来描述,映射到雷诺数参数的无限值极限(r $\rightarrow \infty,\ \epsilon= 1$)上。实际上,弱耗散通过较小的$\epsilon$值,在大r值状态下产生并控制了探索得很好的混沌路径。因此,非耗散$\epsilon=0 $可积极限是洛伦兹系统通向混沌的门户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信