{"title":"The FTG+PM framework for multi-paradigm modelling: an automotive case study","authors":"Sadaf Mustafiz, J. Denil, L. Lucio, H. Vangheluwe","doi":"10.1145/2508443.2508446","DOIUrl":null,"url":null,"abstract":"In recent years, many new concepts, methodologies, and tools have emerged, which have made Model Driven Engineering (MDE) more usable, precise and automated. We have earlier proposed a conceptual framework, FTG+PM, that acts as a guide for carrying out model transformations, and as a basis for unifying key MDE practices, namely multi-paradigm modelling, meta-modelling, and model transformation. The FTG+PM consists of the Formalism Transformation Graph (FTG) and its complement, the Process Model (PM), and charts activities in the MDE lifecycle such as requirements development, domain-specific design, verification, simulation, analysis, calibration, deployment, code generation, execution, etc. In this paper, we apply the FTG+PM approach to a case study of a power window in the automotive domain. We present a FTG+PM model for the automotive domain, and describe the MDE process we applied based on our experiences with the power window system.","PeriodicalId":176268,"journal":{"name":"MPM '12","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MPM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2508443.2508446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
In recent years, many new concepts, methodologies, and tools have emerged, which have made Model Driven Engineering (MDE) more usable, precise and automated. We have earlier proposed a conceptual framework, FTG+PM, that acts as a guide for carrying out model transformations, and as a basis for unifying key MDE practices, namely multi-paradigm modelling, meta-modelling, and model transformation. The FTG+PM consists of the Formalism Transformation Graph (FTG) and its complement, the Process Model (PM), and charts activities in the MDE lifecycle such as requirements development, domain-specific design, verification, simulation, analysis, calibration, deployment, code generation, execution, etc. In this paper, we apply the FTG+PM approach to a case study of a power window in the automotive domain. We present a FTG+PM model for the automotive domain, and describe the MDE process we applied based on our experiences with the power window system.