{"title":"Polymorphic Malware Detection Using Sequence Classification Methods","authors":"Jake Drew, T. Moore, Michael Hahsler","doi":"10.1109/SPW.2016.30","DOIUrl":null,"url":null,"abstract":"Polymorphic malware detection is challenging due to the continual mutations miscreants introduce to successive instances of a particular virus. Such changes are akin to mutations in biological sequences. Recently, high-throughput methods for gene sequence classification have been developed by the bioinformatics and computational biology communities. In this paper, we argue that these methods can be usefully applied to malware detection. Unfortunately, gene classification tools are usually optimized for and restricted to an alphabet of four letters (nucleic acids). Consequently, we have selected the Strand gene sequence classifier, which offers a robust classification strategy that can easily accommodate unstructured data with any alphabet including source code or compiled machine code. To demonstrate Stand's suitability for classifying malware, we execute it on approximately 500GB of malware data provided by the Kaggle Microsoft Malware Classification Challenge (BIG 2015) used for predicting 9 classes of polymorphic malware. Experiments show that, with minimal adaptation, the method achieves accuracy levels well above 95% requiring only a fraction of the training times used by the winning team's method.","PeriodicalId":341207,"journal":{"name":"2016 IEEE Security and Privacy Workshops (SPW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2016.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Polymorphic malware detection is challenging due to the continual mutations miscreants introduce to successive instances of a particular virus. Such changes are akin to mutations in biological sequences. Recently, high-throughput methods for gene sequence classification have been developed by the bioinformatics and computational biology communities. In this paper, we argue that these methods can be usefully applied to malware detection. Unfortunately, gene classification tools are usually optimized for and restricted to an alphabet of four letters (nucleic acids). Consequently, we have selected the Strand gene sequence classifier, which offers a robust classification strategy that can easily accommodate unstructured data with any alphabet including source code or compiled machine code. To demonstrate Stand's suitability for classifying malware, we execute it on approximately 500GB of malware data provided by the Kaggle Microsoft Malware Classification Challenge (BIG 2015) used for predicting 9 classes of polymorphic malware. Experiments show that, with minimal adaptation, the method achieves accuracy levels well above 95% requiring only a fraction of the training times used by the winning team's method.