On crowdsensed data acquisition using multi-dimensional point processes

Saket K. Sathe, T. Sellis, K. Aberer
{"title":"On crowdsensed data acquisition using multi-dimensional point processes","authors":"Saket K. Sathe, T. Sellis, K. Aberer","doi":"10.1109/ICDEW.2015.7129562","DOIUrl":null,"url":null,"abstract":"Crowdsensing applications are increasing at a tremendous rate. In crowdsensing, mobile sensors (humans, vehicle-mounted sensors, etc.) generate streams of information that is used for inferring high-level phenomena of interest (e.g, traffic jams, air pollution). Unlike traditional sensor network data, crowdsensed data has a highly skewed spatio-temporal distribution caused largely due to the mobility of sensors [1]. Thus, designing systems that can mitigate this effect by acquiring crowdsensed at a fixed spatio-temporal rate are needed. In this paper we propose using multi-dimensional point processes (MDPPs), a mathematical modeling tool that can be effectively used for performing this data acquisition task.","PeriodicalId":333151,"journal":{"name":"2015 31st IEEE International Conference on Data Engineering Workshops","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 31st IEEE International Conference on Data Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2015.7129562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Crowdsensing applications are increasing at a tremendous rate. In crowdsensing, mobile sensors (humans, vehicle-mounted sensors, etc.) generate streams of information that is used for inferring high-level phenomena of interest (e.g, traffic jams, air pollution). Unlike traditional sensor network data, crowdsensed data has a highly skewed spatio-temporal distribution caused largely due to the mobility of sensors [1]. Thus, designing systems that can mitigate this effect by acquiring crowdsensed at a fixed spatio-temporal rate are needed. In this paper we propose using multi-dimensional point processes (MDPPs), a mathematical modeling tool that can be effectively used for performing this data acquisition task.
基于多维点过程的众感数据采集
众感应用正在以惊人的速度增长。在群体感知中,移动传感器(人类、车载传感器等)产生信息流,用于推断感兴趣的高级现象(例如,交通拥堵、空气污染)。与传统的传感器网络数据不同,众感数据具有高度的时空分布偏斜,这主要是由于传感器的移动性[1]。因此,需要设计能够通过以固定的时空速率获取众感来减轻这种影响的系统。在本文中,我们建议使用多维点过程(MDPPs),一种可以有效地用于执行此数据采集任务的数学建模工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信