Target-Bidirectional Neural Models for Machine Transliteration

NEWS@ACM Pub Date : 2016-08-01 DOI:10.18653/v1/W16-2711
A. Finch, Lemao Liu, Xiaolin Wang, E. Sumita
{"title":"Target-Bidirectional Neural Models for Machine Transliteration","authors":"A. Finch, Lemao Liu, Xiaolin Wang, E. Sumita","doi":"10.18653/v1/W16-2711","DOIUrl":null,"url":null,"abstract":"Our purely neural network-based system represents a paradigm shift away from the techniques based on phrase-based statistical machine translation we have used in the past. The approach exploits the agreement between a pair of target-bidirectional LSTMs, in order to generate balanced targets with both good suffixes and good prefixes. The evaluation results show that the method is able to match and even surpass the current state-of-the-art on most language pairs, but also exposes weaknesses on some tasks motivating further study. The Janus toolkit that was used to build the systems used in the evaluation is publicly available at https://github.com/lemaoliu/Agtarbidir.","PeriodicalId":254249,"journal":{"name":"NEWS@ACM","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Our purely neural network-based system represents a paradigm shift away from the techniques based on phrase-based statistical machine translation we have used in the past. The approach exploits the agreement between a pair of target-bidirectional LSTMs, in order to generate balanced targets with both good suffixes and good prefixes. The evaluation results show that the method is able to match and even surpass the current state-of-the-art on most language pairs, but also exposes weaknesses on some tasks motivating further study. The Janus toolkit that was used to build the systems used in the evaluation is publicly available at https://github.com/lemaoliu/Agtarbidir.
机器音译的目标-双向神经模型
我们的纯粹基于神经网络的系统代表了我们过去使用的基于短语的统计机器翻译技术的范式转变。该方法利用一对目标-双向lstm之间的一致性,以生成具有良好后缀和前缀的平衡目标。评价结果表明,该方法在大多数语言对上可以达到甚至超过目前的水平,但在一些有待进一步研究的任务上也存在不足。用于构建评估中使用的系统的Janus工具包可在https://github.com/lemaoliu/Agtarbidir上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信