On graph-based feature selection for multi-hop performance characterization in industrial smart water networks

A. Panousopoulou, P. Tsakalides
{"title":"On graph-based feature selection for multi-hop performance characterization in industrial smart water networks","authors":"A. Panousopoulou, P. Tsakalides","doi":"10.1109/CySWater.2016.7469068","DOIUrl":null,"url":null,"abstract":"Recent deployments of Smart Water Networks in urban environments are causing a paradigm shift towards sustainable water resources management. Nevertheless, there exists a substantial gap on respective solutions for industrial water treatment. In such deployments the wireless network backbone would have to overcome limiting factors that span across different layers of a protocol stack. Incorporating data analytics for capturing multi-dimensional correlations could be extremely beneficial to the design of reconfigurable network protocols for industrial Smart Water Networks. In this work, we exploit recent findings in the arena of network measurements and we propose a graph-based unsupervised feature selection approach for extracting the dominant network conditions that affect the performance of user-defined links. We employ a real- life industrial Smart Water Network deployed in a desalination plant to evaluate the efficacy of our approach. Finally, we provide useful insights on how different locations in a desalination plant affect the performance of the network backbone.","PeriodicalId":122308,"journal":{"name":"2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CySWater.2016.7469068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent deployments of Smart Water Networks in urban environments are causing a paradigm shift towards sustainable water resources management. Nevertheless, there exists a substantial gap on respective solutions for industrial water treatment. In such deployments the wireless network backbone would have to overcome limiting factors that span across different layers of a protocol stack. Incorporating data analytics for capturing multi-dimensional correlations could be extremely beneficial to the design of reconfigurable network protocols for industrial Smart Water Networks. In this work, we exploit recent findings in the arena of network measurements and we propose a graph-based unsupervised feature selection approach for extracting the dominant network conditions that affect the performance of user-defined links. We employ a real- life industrial Smart Water Network deployed in a desalination plant to evaluate the efficacy of our approach. Finally, we provide useful insights on how different locations in a desalination plant affect the performance of the network backbone.
基于图的工业智能水网多跳性能特征选择研究
最近在城市环境中部署的智能水网正在引起向可持续水资源管理的范式转变。然而,在各自的工业水处理解决方案上存在着很大的差距。在这种部署中,无线网络骨干网必须克服跨越协议栈不同层的限制因素。结合数据分析来捕获多维相关性对于工业智能水网的可重构网络协议的设计非常有益。在这项工作中,我们利用网络测量领域的最新发现,提出了一种基于图的无监督特征选择方法,用于提取影响用户定义链接性能的主要网络条件。我们在一家海水淡化厂部署了一个现实生活中的工业智能水网络,以评估我们的方法的有效性。最后,我们就海水淡化厂的不同位置如何影响网络骨干网的性能提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信