Arindam Sadhu, Kunal Das, D. De, Maitreyi Ray Kanjilal
{"title":"Tile-based N-variable Symmetric Logic Function Syntheses in Quantum-dot Cellular Automata","authors":"Arindam Sadhu, Kunal Das, D. De, Maitreyi Ray Kanjilal","doi":"10.1109/ICCE50343.2020.9290696","DOIUrl":null,"url":null,"abstract":"Tile Nanostructures in Quantum-dot Cellular Automata (QCA) are proved to be a robust and reliable structure to fabricate the logic device. In this scientific attempt, we have focused on N-variable symmetric Logic function synthesis in Quantum-dot Cellular Automata with tile nanostructure. Coupled Majority-minority voter (CMmV) voter is applied to implement 2 –variable and 3 –variable logic syntheses in Quantum-dot Cellular Automata. The N-variable symmetric logic function is applicable to implement any logic circuit. Two and three variables Quantum-dot Cellular Automata symmetric logic functions are synthesized in this article. Hence any digital logic circuit can be implemented with proposed Coupled Majority-minority voter (CMmV).","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tile Nanostructures in Quantum-dot Cellular Automata (QCA) are proved to be a robust and reliable structure to fabricate the logic device. In this scientific attempt, we have focused on N-variable symmetric Logic function synthesis in Quantum-dot Cellular Automata with tile nanostructure. Coupled Majority-minority voter (CMmV) voter is applied to implement 2 –variable and 3 –variable logic syntheses in Quantum-dot Cellular Automata. The N-variable symmetric logic function is applicable to implement any logic circuit. Two and three variables Quantum-dot Cellular Automata symmetric logic functions are synthesized in this article. Hence any digital logic circuit can be implemented with proposed Coupled Majority-minority voter (CMmV).