Shortest paths on polyhedral surfaces and terrains

Siu-Wing Cheng, Jiongxin Jin
{"title":"Shortest paths on polyhedral surfaces and terrains","authors":"Siu-Wing Cheng, Jiongxin Jin","doi":"10.1145/2591796.2591821","DOIUrl":null,"url":null,"abstract":"We present an algorithm for computing shortest paths on polyhedral surfaces under convex distance functions. Let n be the total number of vertices, edges and faces of the surface. Our algorithm can be used to compute L1 and L∞ shortest paths on a polyhedral surface in O(n2 log4 n) time. Given an ε ∈ (0, 1), our algorithm can find (1 + ε)-approximate shortest paths on a terrain with gradient constraints and under cost functions that are linear combinations of path length and total ascent. The running time is O[EQUATION]. This is the first efficient PTAS for such a general setting of terrain navigation.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present an algorithm for computing shortest paths on polyhedral surfaces under convex distance functions. Let n be the total number of vertices, edges and faces of the surface. Our algorithm can be used to compute L1 and L∞ shortest paths on a polyhedral surface in O(n2 log4 n) time. Given an ε ∈ (0, 1), our algorithm can find (1 + ε)-approximate shortest paths on a terrain with gradient constraints and under cost functions that are linear combinations of path length and total ascent. The running time is O[EQUATION]. This is the first efficient PTAS for such a general setting of terrain navigation.
多面体表面和地形上的最短路径
提出了一种基于凸距离函数的多面体表面最短路径计算算法。设n为曲面的顶点、边和面的总数。该算法可以在O(n2 log4n)时间内计算多面体表面上的L1和L∞最短路径。给定ε∈(0,1),我们的算法可以在具有梯度约束的地形上找到(1 + ε)-近似最短路径,并且代价函数是路径长度和总上升的线性组合。运行时间为0[式]。这是第一个有效的PTAS为这样一个一般设置的地形导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信