M. Alkhodari, G. Apostolidis, H. F. Jelinek, L. Hadjileontiadis, A. Khandoker
{"title":"Prediction of LVEF using BiLSTM and Swarm Decomposition-based 24-h HRV Components","authors":"M. Alkhodari, G. Apostolidis, H. F. Jelinek, L. Hadjileontiadis, A. Khandoker","doi":"10.1109/CISP-BMEI53629.2021.9624338","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the effectiveness of using hourly Bi-Directional Long Short-Term Memory (BiLSTM) classifiers to predict left ventricle ejection fraction (LVEF) groups of CAD patients using their heart rate variability and Swarm Decomposition components. The 24-hour segmentation of patients' HRV data was performed using Cosinor Analysis. The novel Swarm Decomposition algorithm was then applied on the per-hour HRV data to extract the corresponding oscillatory components (HRV-OCs). The OCs represent the four bands in an HRV data, namely the ultra-low frequency (ULF), very-low frequency (VLF), low frequency (LF), and high frequency (HF). The training and classification process followed a leave-one-out scheme and was done for each per-hour HRV-OC. The highest prediction accuracy of LVEF was observed when using the VLF and HF components of HRV at an early morning hour (03-00-04:00 - average accuracy: 75.6%) and an evening hour (18:00-19:00 - average accuracy: 72.7%), respectively. In addition, the classifier achieved high sensitivity levels in predicting the borderline group (up to 76.7%), which is usually ambiguous and hard to diagnose in clinical practice.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigated the effectiveness of using hourly Bi-Directional Long Short-Term Memory (BiLSTM) classifiers to predict left ventricle ejection fraction (LVEF) groups of CAD patients using their heart rate variability and Swarm Decomposition components. The 24-hour segmentation of patients' HRV data was performed using Cosinor Analysis. The novel Swarm Decomposition algorithm was then applied on the per-hour HRV data to extract the corresponding oscillatory components (HRV-OCs). The OCs represent the four bands in an HRV data, namely the ultra-low frequency (ULF), very-low frequency (VLF), low frequency (LF), and high frequency (HF). The training and classification process followed a leave-one-out scheme and was done for each per-hour HRV-OC. The highest prediction accuracy of LVEF was observed when using the VLF and HF components of HRV at an early morning hour (03-00-04:00 - average accuracy: 75.6%) and an evening hour (18:00-19:00 - average accuracy: 72.7%), respectively. In addition, the classifier achieved high sensitivity levels in predicting the borderline group (up to 76.7%), which is usually ambiguous and hard to diagnose in clinical practice.