Multi-Round Parsing-based Multiword Rules for Scientific Knowledge Extraction

Joseph Kuebler, Lingbo Tong, Meng Jiang
{"title":"Multi-Round Parsing-based Multiword Rules for Scientific Knowledge Extraction","authors":"Joseph Kuebler, Lingbo Tong, Meng Jiang","doi":"10.1109/ICKG52313.2021.00051","DOIUrl":null,"url":null,"abstract":"Information extraction (IE) in scientific literature has facilitated many down-stream knowledge-driven tasks. Ope-nIE, which does not require any relation schema but identifies a relational phrase to describe the relationship between a subject and an object, is being a trending topic of IE in sciences. The subjects, objects, and relations are often multiword expressions, which brings challenges for methods to identify the boundaries of the expressions given very limited or even no training data. In this work, we present a set of rules for extracting structured information based on dependency parsing that can be applied to any scientific dataset requiring no expert's annotation. Results on novel datasets show the effectiveness of the proposed method. We discuss negative results as well.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Information extraction (IE) in scientific literature has facilitated many down-stream knowledge-driven tasks. Ope-nIE, which does not require any relation schema but identifies a relational phrase to describe the relationship between a subject and an object, is being a trending topic of IE in sciences. The subjects, objects, and relations are often multiword expressions, which brings challenges for methods to identify the boundaries of the expressions given very limited or even no training data. In this work, we present a set of rules for extracting structured information based on dependency parsing that can be applied to any scientific dataset requiring no expert's annotation. Results on novel datasets show the effectiveness of the proposed method. We discuss negative results as well.
基于多轮解析的多词规则科学知识抽取
科学文献中的信息提取(IE)为许多下游知识驱动任务提供了便利。open - nie不需要任何关系模式,而是识别一个关系短语来描述主体和客体之间的关系,正在成为科学领域IE的一个热门话题。主题、对象和关系往往是多词表达,这给在非常有限甚至没有训练数据的情况下识别表达边界的方法带来了挑战。在这项工作中,我们提出了一套基于依赖解析提取结构化信息的规则,可以应用于任何不需要专家注释的科学数据集。在新数据集上的结果表明了该方法的有效性。我们也会讨论负面结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信