PERBANDINGAN METODE FUZZY C-MEANS DAN K-MEANS UNTUK PEMETAAN DAERAH RAWAN KRIMINALITAS DI KOTA SEMARANG

H. Firdaus, Arief Laila Nugraha, Bandi Sasmito, M. Awaluddin
{"title":"PERBANDINGAN METODE FUZZY C-MEANS DAN K-MEANS UNTUK PEMETAAN DAERAH RAWAN KRIMINALITAS DI KOTA SEMARANG","authors":"H. Firdaus, Arief Laila Nugraha, Bandi Sasmito, M. Awaluddin","doi":"10.14710/elipsoida.2021.9219","DOIUrl":null,"url":null,"abstract":"Kriminalitas merupakan salah satu masalah penting di wilayah perkotaan termasuk di Kota Semarang. namun di Polrestabes Kota Semarang selama ini hanya mencatat laporan terjadinya kriminalitas tanpa memvisualisasikan ke dalam bentuk informasi spasial. Hal ini perlu dilakukan untuk memudahkan pihak berwenang dalam memetakan dan monitoring sebaran daerah rawan kriminalitas. Pada penelitian ini, dilakukan perbandingan metode clustering untuk menentukan metode yang paling baik untuk memetakan daerah rawan kriminalitas di Kota Semarang. Metode clustering yang digunakan yaitu Fuzzy C-Means dan K-Means. Metode Fuzzy C-Means adalah pengelompokan data ditentukan oleh derajat keanggotaan, sedangkan metode K-Means adalah pengelompokan data ditentukan dari centroid kejadian kriminalitas. Hasil penelitian ini menunjukan terdapat 1.965 kasus kriminalitas selama kurun waktu tahun 2016-2018. Daerah tingkat kerawanan dari kedua metode tersebut mempunyai hasil yang berbeda-beda. Nilai uji pengolahan metode Fuzzy C-Means sebesar 0,818 dikategorikan baik karena mendekati angka 1. Hasil verifikasi dari kedua metode terhadap data kriminalitas tahun 2019, menunjukan nilai metode Fuzzy C-Means lebih baik dengan persentase sebesar 71,23 %.","PeriodicalId":190139,"journal":{"name":"Elipsoida : Jurnal Geodesi dan Geomatika","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elipsoida : Jurnal Geodesi dan Geomatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/elipsoida.2021.9219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Kriminalitas merupakan salah satu masalah penting di wilayah perkotaan termasuk di Kota Semarang. namun di Polrestabes Kota Semarang selama ini hanya mencatat laporan terjadinya kriminalitas tanpa memvisualisasikan ke dalam bentuk informasi spasial. Hal ini perlu dilakukan untuk memudahkan pihak berwenang dalam memetakan dan monitoring sebaran daerah rawan kriminalitas. Pada penelitian ini, dilakukan perbandingan metode clustering untuk menentukan metode yang paling baik untuk memetakan daerah rawan kriminalitas di Kota Semarang. Metode clustering yang digunakan yaitu Fuzzy C-Means dan K-Means. Metode Fuzzy C-Means adalah pengelompokan data ditentukan oleh derajat keanggotaan, sedangkan metode K-Means adalah pengelompokan data ditentukan dari centroid kejadian kriminalitas. Hasil penelitian ini menunjukan terdapat 1.965 kasus kriminalitas selama kurun waktu tahun 2016-2018. Daerah tingkat kerawanan dari kedua metode tersebut mempunyai hasil yang berbeda-beda. Nilai uji pengolahan metode Fuzzy C-Means sebesar 0,818 dikategorikan baik karena mendekati angka 1. Hasil verifikasi dari kedua metode terhadap data kriminalitas tahun 2019, menunjukan nilai metode Fuzzy C-Means lebih baik dengan persentase sebesar 71,23 %.
对绘制三宝垄易格区的方法进行比较
犯罪率是包括三宝垄在内的城市地区的主要问题之一。但在过去,三宝垄的警察局只记录了犯罪报告,却没有想象出犯罪的空间信息。这是必要的,以帮助当局绘制和监测犯罪猖獗地区的地图和监测。在这项研究中,对分类方法进行比较,以确定确定确定三宝垄犯罪易发地区的最佳方法。目前使用的clustering方法是模糊的c模糊的c -手段是由会员国程度决定的数据分组,而k -手段是由犯罪事件中心确定的数据组。本研究发现,在2018年到2018年的时间里,有1665起刑事案件。这两种方法的不均匀程度各不相同。模糊方法测试值为0。这两种方法对2019年犯罪数据的验证表明,模糊c -手段的价值更好,比例为71.23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信