Feynman categories and representation theory

R. Kaufmann
{"title":"Feynman categories and representation\n theory","authors":"R. Kaufmann","doi":"10.1090/CONM/769/15419","DOIUrl":null,"url":null,"abstract":"We give a presentation of Feynman categories from a representation--theoretical viewpoint. \nFeynman categories are a special type of monoidal categories and their representations are monoidal functors. They can be viewed as a far reaching generalization of groups, algebras and modules. Taking a new algebraic approach, we provide more examples and more details for several key constructions. This leads to new applications and results. \nThe text is intended to be a self--contained basis for a crossover of more elevated constructions and results in the fields of representation theory and Feynman categories, whose applications so far include number theory, geometry, topology and physics.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/769/15419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We give a presentation of Feynman categories from a representation--theoretical viewpoint. Feynman categories are a special type of monoidal categories and their representations are monoidal functors. They can be viewed as a far reaching generalization of groups, algebras and modules. Taking a new algebraic approach, we provide more examples and more details for several key constructions. This leads to new applications and results. The text is intended to be a self--contained basis for a crossover of more elevated constructions and results in the fields of representation theory and Feynman categories, whose applications so far include number theory, geometry, topology and physics.
费曼范畴和表征理论
我们从表征理论的角度给出了费曼范畴的一个表述。费曼范畴是一类特殊的一元范畴,它的表示是一元函子。它们可以被看作是群、代数和模的广泛推广。采用一种新的代数方法,我们为几个关键结构提供了更多的例子和更多的细节。这导致了新的应用和结果。文本的目的是成为一个自我包含的基础,交叉更高级的结构和结果在表示理论和费曼范畴的领域,其应用到目前为止包括数论,几何,拓扑和物理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信