Implementing empirical modelling techniques with recurrent neural networks

T. Catfolis, K. Meert
{"title":"Implementing empirical modelling techniques with recurrent neural networks","authors":"T. Catfolis, K. Meert","doi":"10.1109/TAI.1996.560746","DOIUrl":null,"url":null,"abstract":"A modelling technique, using recurrent networks, based on the NARMAX framework (Nonlinear Autoregressive Moving Average with Exogenous Inputs), is developed. Some properties of the technique are demonstrated by means of a mathematical example. In the NARMAX model, the term N indicates that the model is based on nonlinear equations, AR indicates that previous observations (y) are used, MA indicates that previous errors (e) are used and X indicates that exogenous inputs (u) are used. Often, the number of delay lines on each input type is mentioned together with the type of model. The proposed solution to the delay length problem is to use a fully recurrent neural network with the RTRL algorithm (R.J. Williams and D. Zipser, 1989) as learning scheme.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A modelling technique, using recurrent networks, based on the NARMAX framework (Nonlinear Autoregressive Moving Average with Exogenous Inputs), is developed. Some properties of the technique are demonstrated by means of a mathematical example. In the NARMAX model, the term N indicates that the model is based on nonlinear equations, AR indicates that previous observations (y) are used, MA indicates that previous errors (e) are used and X indicates that exogenous inputs (u) are used. Often, the number of delay lines on each input type is mentioned together with the type of model. The proposed solution to the delay length problem is to use a fully recurrent neural network with the RTRL algorithm (R.J. Williams and D. Zipser, 1989) as learning scheme.
利用递归神经网络实现经验建模技术
基于NARMAX框架(带外生输入的非线性自回归移动平均),开发了一种使用循环网络的建模技术。通过一个数学实例证明了该方法的一些性质。在NARMAX模型中,N项表示模型基于非线性方程,AR表示使用以前的观测值(y), MA表示使用以前的误差(e), X表示使用外源输入(u)。通常,每种输入类型上的延迟线数量与模型类型一起提到。提出的延迟长度问题的解决方案是使用RTRL算法(R.J. Williams and D. Zipser, 1989)作为学习方案的全递归神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信