On co-training online biometric classifiers

H. Bhatt, Samarth Bharadwaj, Richa Singh, Mayank Vatsa, A. Noore, A. Ross
{"title":"On co-training online biometric classifiers","authors":"H. Bhatt, Samarth Bharadwaj, Richa Singh, Mayank Vatsa, A. Noore, A. Ross","doi":"10.1109/IJCB.2011.6117519","DOIUrl":null,"url":null,"abstract":"In an operational biometric verification system, changes in biometric data over a period of time can affect the classification accuracy. Online learning has been used for updating the classifier decision boundary. However, this requires labeled data that is only available during new enrolments. This paper presents a biometric classifier update algorithm in which the classifier decision boundary is updated using both labeled enrolment instances and unlabeled probe instances. The proposed co-training online classifier update algorithm is presented as a semi-supervised learning task and is applied to a face verification application. Experiments indicate that the proposed algorithm improves the performance both in terms of classification accuracy and computational time.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In an operational biometric verification system, changes in biometric data over a period of time can affect the classification accuracy. Online learning has been used for updating the classifier decision boundary. However, this requires labeled data that is only available during new enrolments. This paper presents a biometric classifier update algorithm in which the classifier decision boundary is updated using both labeled enrolment instances and unlabeled probe instances. The proposed co-training online classifier update algorithm is presented as a semi-supervised learning task and is applied to a face verification application. Experiments indicate that the proposed algorithm improves the performance both in terms of classification accuracy and computational time.
关于协同训练在线生物特征分类器
在一个可操作的生物特征验证系统中,一段时间内生物特征数据的变化会影响分类的准确性。在线学习被用于更新分类器决策边界。然而,这需要仅在新注册期间可用的标记数据。本文提出了一种生物特征分类器更新算法,该算法使用标记的注册实例和未标记的探测实例更新分类器决策边界。本文提出的联合训练在线分类器更新算法是一种半监督学习任务,并应用于人脸验证应用。实验表明,该算法在分类精度和计算时间上都有较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信